一种基于大语言模型的古诗词到视频的生成方法及装置

    公开(公告)号:CN119415674B

    公开(公告)日:2025-04-04

    申请号:CN202510025829.5

    申请日:2025-01-08

    Abstract: 本发明公开一种基于大语言模型的古诗词到视频的生成方法及装置,涉及视频生成技术领域。方法包括:构建古诗词知识库;根据大语言模型采用Soft Prompt训练方法,得到训练好的故事学习向量;根据待生成古诗词数据、对应的文本知识、训练好的故事学习向量以及大语言模型,得到待生成古诗词数据对应的故事;根据待生成古诗词数据对应的故事、预设的提示词以及大语言模型,得到待生成古诗词数据对应的剧本;根据剧本、图片知识以及图片生成模型,生成待生成古诗词数据对应的故事图片;根据故事图片以及视频生成模型,生成待生成古诗词数据对应的视频。采用本发明,可以解决古诗词视频数据集匮乏的问题,提升了古诗词视频的生成质量。

    一种同声传译模型训练方法、装置、设备及存储介质

    公开(公告)号:CN118395999A

    公开(公告)日:2024-07-26

    申请号:CN202410841712.X

    申请日:2024-06-27

    Abstract: 本发明提供一种同声传译模型训练方法、装置、设备及存储介质,涉及人工智能技术领域,方法包括:将源语言文字序列输入编码器,生成源语言文字序列的上下文表示;解码器结合历史生成的目标语言文字序列和源语言文字序列的上下文表示,通过掩码多头注意力机制进行推理,生成候选目标语言文字序列;基于翻译质量评估指标,将每个候选目标语言文字序列与源语言文字序列进行比较,确定每个候选目标语言文字序列的质量得分;将质量得分确定为目标函数的风险;采用梯度下降优化算法,最小化目标函数,根据目标函数通过反向传播算法对编码器和解码器进行迭代更新,生成同声传译模型。本发明可以训练出翻译的准确性和流畅性更高的同声传译模型。

    基于增强拒绝采样训练的大语言模型对齐微调方法和系统

    公开(公告)号:CN117852616B

    公开(公告)日:2024-05-31

    申请号:CN202410229872.9

    申请日:2024-02-29

    Abstract: 本发明公开了一种基于增强拒绝采样训练的大语言模型对齐微调方法和系统,涉及人工智能技术领域,包括:基于有监督微调后的大语言模型,为预设指令请求文本生成N条响应文本;基于训练好的奖励模型对每条响应文本进行评估,得到奖励分数;将N条响应文本按照对应的奖励分数由高到低排序,并选取前k条响应文本组成目标样本集;基于预设加权函数,计算每条响应文本对应的数据权重;基于预设指令请求文本、目标样本集中的响应文本和数据权重构建加权微调数据集,并基于加权微调数据集对有监督微调后的大语言模型进行对齐微调,得到目标大语言模型。本发明缓解了现有技术存在的过拟合风险高、易受有噪奖励分数干扰的技术问题。

    基于增强拒绝采样训练的大语言模型对齐微调方法和系统

    公开(公告)号:CN117852616A

    公开(公告)日:2024-04-09

    申请号:CN202410229872.9

    申请日:2024-02-29

    Abstract: 本发明公开了一种基于增强拒绝采样训练的大语言模型对齐微调方法和系统,涉及人工智能技术领域,包括:基于有监督微调后的大语言模型,为预设指令请求文本生成N条响应文本;基于训练好的奖励模型对每条响应文本进行评估,得到奖励分数;将N条响应文本按照对应的奖励分数由高到低排序,并选取前k条响应文本组成目标样本集;基于预设加权函数,计算每条响应文本对应的数据权重;基于预设指令请求文本、目标样本集中的响应文本和数据权重构建加权微调数据集,并基于加权微调数据集对有监督微调后的大语言模型进行对齐微调,得到目标大语言模型。本发明缓解了现有技术存在的过拟合风险高、易受有噪奖励分数干扰的技术问题。

    一种对抗攻击样本生成方法和装置、电子设备

    公开(公告)号:CN117808095A

    公开(公告)日:2024-04-02

    申请号:CN202410206258.0

    申请日:2024-02-26

    Abstract: 本发明公开了一种对抗攻击样本生成方法和装置、电子设备,属于人工智能安全技术领域,所述方法包括:对第一大语言模型进行全量微调,得到第二模型;使用BERT‑Attack算法对所述第二模型进行攻击实验,得到原始攻击样本;使用原始攻击样本对第二模型进行知识蒸馏处理,得到第三模型;使用攻击算法和原始攻击样本,对第三模型进行文本对抗攻击,得到迁移攻击样本;确定原始攻击样本与迁移攻击样本的可迁移性;依据可迁移性、原始攻击样本和迁移攻击样本,进行攻击算法自适应性改进。本发明提供的对抗攻击样本生成方案,能够增加所生成的对抗攻击样本在不同环境和模型下的可迁移性,提高攻击的鲁棒性和可靠性。

    一种基于思维链确定问题答案的方法和装置、电子设备

    公开(公告)号:CN117787421A

    公开(公告)日:2024-03-29

    申请号:CN202410201337.2

    申请日:2024-02-23

    Abstract: 本发明公开了一种基于思维链确定问题答案的方法和装置、电子设备,属于人工智能技术领域,所述方法包括:获取待解答问题以及多个样本数据,其中,每个所述样本数据包括:一个问题和所述问题对应的第一求解计划;将所述待解答问题与多个所述样本数据进行拼接后输入模型,得到待解答问题对应的第二求解计划;控制所述模型按照所述第二求解计划中的每个步骤执行求解,直至完成最后一个步骤,得到目标答案。本申请提供的基于思维链确定问题答案的方案,既能够赋予思维链纠错能力,又可以人为或者模型自动干预对第二求解计划中的第一步骤进行修正。

    一种同声传译模型训练方法及装置

    公开(公告)号:CN118395999B

    公开(公告)日:2024-09-10

    申请号:CN202410841712.X

    申请日:2024-06-27

    Abstract: 本发明提供一种同声传译模型训练方法、装置、设备及存储介质,涉及人工智能技术领域,方法包括:将源语言文字序列输入编码器,生成源语言文字序列的上下文表示;解码器结合历史生成的目标语言文字序列和源语言文字序列的上下文表示,通过掩码多头注意力机制进行推理,生成候选目标语言文字序列;基于翻译质量评估指标,将每个候选目标语言文字序列与源语言文字序列进行比较,确定每个候选目标语言文字序列的质量得分;将质量得分确定为目标函数的风险;采用梯度下降优化算法,最小化目标函数,根据目标函数通过反向传播算法对编码器和解码器进行迭代更新,生成同声传译模型。本发明可以训练出翻译的准确性和流畅性更高的同声传译模型。

    基于少样本学习的大语言模型的图到文本生成方法及装置

    公开(公告)号:CN118628614B

    公开(公告)日:2024-12-27

    申请号:CN202411107024.7

    申请日:2024-08-13

    Abstract: 本发明涉及人工智能技术领域,特别是指一种基于少样本学习的大语言模型的图到文本生成方法及装置。方法包括:构建正例样本和负例样本,对初始的图神经网络进行训练,得到图编码器,设定四个不同的训练任务,获取分别对应的训练样本,对初始的线性网络进行训练,得到图到文本投影器;选取少样本学习样本,使用少样本学习样本对预训练的大语言模型进行微调,根据图编码器、图到文本投影器以及微调后的大语言模型,得到训练好的基于大语言模型的图到文本生成模型;获取待生成图,将待生成图输入训练好的基于大语言模型的图到文本生成模型,得到待生成图对应的生成文本。采用本发明,可以降低对大规模标注数据集的依赖,提高训练的模型的准确度。

    基于少样本学习的大语言模型的图到文本生成方法及装置

    公开(公告)号:CN118628614A

    公开(公告)日:2024-09-10

    申请号:CN202411107024.7

    申请日:2024-08-13

    Abstract: 本发明涉及人工智能技术领域,特别是指一种基于少样本学习的大语言模型的图到文本生成方法及装置。方法包括:构建正例样本和负例样本,对初始的图神经网络进行训练,得到图编码器,设定四个不同的训练任务,获取分别对应的训练样本,对初始的线性网络进行训练,得到图到文本投影器;选取少样本学习样本,使用少样本学习样本对预训练的大语言模型进行微调,根据图编码器、图到文本投影器以及微调后的大语言模型,得到训练好的基于大语言模型的图到文本生成模型;获取待生成图,将待生成图输入训练好的基于大语言模型的图到文本生成模型,得到待生成图对应的生成文本。采用本发明,可以降低对大规模标注数据集的依赖,提高训练的模型的准确度。

Patent Agency Ranking