-
公开(公告)号:CN116958748A
公开(公告)日:2023-10-27
申请号:CN202310947023.2
申请日:2023-07-28
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G06V10/774 , G06V10/771 , G06V10/82 , G06N3/0455 , G06N3/0464 , G06N3/08
Abstract: 本发明涉及图像检测技术领域,公开了多任务因果学习的图像检测方法、装置、设备及介质,方法包括:根据多个样本特征对同一任务的重要性分数,从多个样本特征中筛选出干预特征;根据合并反事实特征,以及第二任务的反事实特征,确定第一任务对第二任务的因果亲和力;分别根据每个任务的反事实特征和样本特征的预测损失值生成第一正则约束项;根据第一任务的样本特征的预测损失值、第二任务的样本特征的预测损失值以及第一任务对第二任务的因果亲和力,生成第二正则约束项;根据判别损失函数、第一正则约束项和第二正则约束项,生成预测损失函数;根据预测损失函数对任务模型进行训练得到优化后的多任务模型。本发明能够提高图像检测的性能。
-
公开(公告)号:CN116955539A
公开(公告)日:2023-10-27
申请号:CN202311192177.1
申请日:2023-09-15
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本发明提供一种基于思维链推理隐式生成内容合规性判定方法,包括:步骤一:将安全性未知文本X输入大规模语言模型M;步骤二:询问大规模语言模型M安全性未知文本X中的主客体成份,获取主体文本S以及客体文本T;步骤三:询问大规模语言模型M潜在观点,获得潜在观点文本O;步骤四:根据步骤三获得的潜在观点文本O,询问大规模语言模型M安全性未知文本X表达的意图是否符合规范,如果符合规范,输出:安全,否则输出:不安全。本发明的有益效果是:本发明很好的利用大规模语言模型的常识推断能力以及特定领域的专家知识,合理的提示大规模语言模型进行链式推理,逐步地揭示出深层的文本隐藏语义,大幅度提升了系统文本安全检测系统的性能。
-
公开(公告)号:CN116909574A
公开(公告)日:2023-10-20
申请号:CN202311154532.6
申请日:2023-09-08
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G06F8/41 , G06F16/33 , G06F40/194
Abstract: 本发明提供了一种检索增强的结构化代码生成系统及方法,该结构化代码生成系统包括检索前处理模块、结构信息提取模块和代码生成融合模块,所述检索前处理模块根据自然语言描述来检索到功能相关的代码片段;所述结构信息提取模块对所述检索前处理模块检索到的代码片段进行结构信息的提取;所述代码生成融合模块将输入的自然语言和代码片段进行融合,完成代码生成任务。本发明的有益效果是:本发明在不改变原有模型规模的条件下,增强其泛化性,提升代码生成的能力。
-
公开(公告)号:CN116318929A
公开(公告)日:2023-06-23
申请号:CN202310206593.6
申请日:2023-03-07
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: H04L9/40 , H04L41/0631 , H04L41/16
Abstract: 本发明涉及网络安全技术领域,特别涉及一种基于安全告警数据的攻击策略抽取方法。其方法包括以下步骤:S1.从告警文本中获取攻击者的单步攻击信息;S2.构建攻击活动序列集;S3.构建候选攻击策略;S4.构建攻击策略数据集;S5.预训练;S6.模型训练;S7.攻击策略抽取;S8.人工验证。本方法通过训练模型来判断攻击者的一个候选攻击策略是否为全部的有效攻击步骤,并且这些攻击步骤的组合能完成攻击者的攻击目的;通过这个模型,能够使用枚举候选攻击策略的方式关联出攻击者的全部有效攻击步骤,组成攻击者的攻击策略,而无需定义大量的关联规则;而且在过去的关联经验中未被关联的两个告警也可能被本方法所关联。
-
公开(公告)号:CN111462817B
公开(公告)日:2023-06-20
申请号:CN202010221082.8
申请日:2020-03-25
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G16B25/10 , G16B30/10 , G16B40/00 , G06F18/214 , G06N3/0464
Abstract: 本发明公开了一种分类模型构建方法、装置、分类模型及分类方法。所述分类模型构建方法通过构建初始分类模型,在初始分类模型中引入生成层、选择层和比较层,并通过在基因表达谱训练数据集中随机选择两个样本,对生成层、选择层和比较层进行训练和更新,得到目标分类模型,使得可利用生成层,根据基因表达谱数据中任意两个样本生成新的样本,利用选择层,根据新的样本各个特征的权重选择若干个样本特征,利用比较层,根据从所有样本特征中选择的若干个目标特征对新的样本进行分类。本发明能够构建一种适用于基因表达谱的分类模型,实现增加基因表达谱数据的样本数量,缓解少样本特性带来的欠拟合问题,从而进一步提高基因表达谱数据的分类准确度。
-
公开(公告)号:CN115357909B
公开(公告)日:2023-05-16
申请号:CN202211279030.1
申请日:2022-10-19
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G06F21/57 , G06N3/042 , G06N3/0464 , G06N3/045 , G06N3/09
Abstract: 本发明提供了一种用于代码漏洞检测的全局信息感知图神经网络系统,包括关系代码表示模块和全局信息感知模块;关系代码表示模块在图卷积神经网络信息聚合过程中添加边类型信息,用边类型信息丰富节点特征表示,并使用注意力机制增强节点特征;全局信息感知模块在图卷积神经网络中使用大核卷积和小核卷积分别提取代码属性图中的全局特征和局部特征,学习更抽象高级的图表征用于代码漏洞分类。本发明的有益效果是:本发明能缓解传统图神经网络难以有效捕获大图图表征的缺陷,有效地学习代码量大的函数的代码属性图的向量表示并提升漏洞检测的准确率和F1指标。
-
公开(公告)号:CN115842684B
公开(公告)日:2023-05-12
申请号:CN202310138994.2
申请日:2023-02-21
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: H04L9/40
Abstract: 本申请涉及一种基于MDATA子图匹配的多步攻击检测方法,本申请方法包括:构建预设多步攻击事件的MDATA知识图谱查询图;利用数据查询优化器将MDATA知识图谱查询图分解成若干个子查询图;将若干个子查询图储存至SQM‑Tree辅助的数据结构中,SQM‑Tree辅助的数据结构用于跟踪与合并数据;将若干个子查询图匹配MDATA知识图谱数据图中的多步攻击数据,MDATA知识图谱数据图根据历史告警日志数据和正常系统日志数据创建;输出子查询图与MDATA知识图谱数据图的匹配结果,将匹配结果与SQM‑Tree辅助的数据结构进行对比得到预设多步攻击事件的检测结果,有效提高检测效率。
-
公开(公告)号:CN115907144A
公开(公告)日:2023-04-04
申请号:CN202211452853.X
申请日:2022-11-21
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本发明公开了一种事件的预测方法、装置、终端设备以及存储介质,所述方法包括:获取事件执行人第一历史事件信息并建若干第一历史事件四元组,将各第一历史事件四元组输入到预设的事件预测模型,生成未来事件预测结果,在模型训练时,将第二历史时段内每一历史时刻下人物的自身属性信息和人物关系进行平均池化处理,生成各个历史时刻下的人物静态知识图谱,根据多头注意力机制生成历史事件动态信息,生成历史事件动态信息,计算得到各个人物在双曲空间中所对应的坐标点与原点的双曲距离并生成若干未来事件四元组。本发明解决了在预测未来可能发生的事件时,对时间信息处理不充分,无法反映事件间一环扣一环的衔接性技术问题。
-
公开(公告)号:CN115842684A
公开(公告)日:2023-03-24
申请号:CN202310138994.2
申请日:2023-02-21
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: H04L9/40
Abstract: 本申请涉及一种基于MDATA子图匹配的多步攻击检测方法,本申请方法包括:构建预设多步攻击事件的MDATA知识图谱查询图;利用数据查询优化器将MDATA知识图谱查询图分解成若干个子查询图;将若干个子查询图储存至SQM‑Tree辅助的数据结构中,SQM‑Tree辅助的数据结构用于跟踪与合并数据;将若干个子查询图匹配MDATA知识图谱数据图中的多步攻击数据,MDATA知识图谱数据图根据历史告警日志数据和正常系统日志数据创建;输出子查询图与MDATA知识图谱数据图的匹配结果,将匹配结果与SQM‑Tree辅助的数据结构进行对比得到预设多步攻击事件的检测结果,有效提高检测效率。
-
公开(公告)号:CN115600012A
公开(公告)日:2023-01-13
申请号:CN202211523157.3
申请日:2022-12-01
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)(CN)
IPC: G06F16/9535 , G06F8/75 , G06F18/214 , G06N3/0464 , G06N3/08
Abstract: 本发明提供了一种基于知识增强和结构对比的API推荐方法,包括以下步骤:步骤1,代码预处理构图;解析源代码,提取方法、API和结构节点以及它们之间的关系,构成调用关系图和层次结构图;步骤2,知识增强的图嵌入学习;使用图卷积神经网络GCN在调用关系图上传播信息来细化方法和API的初始嵌入表示,同时用翻译模型TransH学习层次结构图中的实体和关系的嵌入表示;步骤3,多任务学习;包括主要的API推荐任务和辅助的对比学习任务。本发明的有益效果是:本发明提出了知识增强的图嵌入学习,使得方法和API的嵌入向量中不仅建模了调用交互还融合了代码中的层次结构信息,优化了方法和API的表示,达到更准确的推荐效果。
-
-
-
-
-
-
-
-
-