一种基于两级神经网络的工鞋穿戴检测方法及装置

    公开(公告)号:CN111626276A

    公开(公告)日:2020-09-04

    申请号:CN202010750662.6

    申请日:2020-07-30

    Abstract: 本发明公开了一种基于两级神经网络的工鞋穿戴检测方法及装置,包括:获取监控视频的图片数据集;对图片数据集中包含的鞋子目标和人体目标进行标注,得到标注数据集;构建两级神经网络模型,所述两级神经网络模型由一级人体检测网络模型和二级鞋子检测网络模型级联而成,二级鞋子检测网络模型的输入为一级人体检测网络模型的输出;将待检测的图片输入到所述两级神经网络模型中,输出人体框位置、鞋子位置相对人体框的偏移和穿戴工鞋的置信度;根据人体框位置、鞋子位置相对人体框的偏移,计算得到鞋子的位置,结合置信度判断是否穿戴工鞋。该方法克服了视频中工作人员的鞋子目标较小导致检测召回率低的问题,可用于工厂中工作人员工鞋穿戴检测。

    一种基于级联预测的安全帽佩戴识别方法

    公开(公告)号:CN111598066A

    公开(公告)日:2020-08-28

    申请号:CN202010722851.2

    申请日:2020-07-24

    Abstract: 本发明公开了一种基于级联预测的安全帽佩戴识别方法,该方法将安全帽佩戴识别分为行人检测、目标跟踪和安全帽佩戴分类三个步骤。在行人检测时,通过基于深度卷积神经网络的检测算法来获取视频每一帧图像中行人目标框的位置;基于行人检测的结果,采用卡尔曼滤波和匈牙利算法进行轨迹关联以得到优化后的行人目标框;对于每一个目标框内的行人,通过一个基于深度卷积神经网络的二分类器来判断其是否佩戴安全帽。本发明采用三个模块级联预测的方式,实现方法简单,可移植性强,能够实现对监控摄像头拍摄的厂区、工地等作业场所中工作人员是否佩戴安全帽的精准识别。

Patent Agency Ranking