-
公开(公告)号:CN116625999A
公开(公告)日:2023-08-22
申请号:CN202310558188.0
申请日:2023-05-17
Applicant: 中国科学院苏州生物医学工程技术研究所
IPC: G01N21/64 , C12Q1/6869
Abstract: 本发明公开一种评估零模波导孔有效载样的方法,包括:制备酶‑引物‑模板三元复合物;将三元复合物和芯片绑定;对芯片进行荧光淬灭,找到具有单个荧光的孔;对芯片进行荧光累积,找到荧光能够持续累积的孔;确定荧光淬灭阶段具有单个荧光,且荧光累积阶段荧光能够持续累积的孔为有效载样孔。本发明还公开了上述方法的应用。本发明构建了一种评估零模波导孔有效载样的方法,使用一种简单的酶‑引物‑模板三元复合物作为研究模型,利用荧光淬灭和荧光累积的过程进行双重判定,有利于更精准地筛选出单分子实时测序的有效载样孔。同时,还能够用于整个测序体系的优化,通过调整来优化有效载样率。
-
公开(公告)号:CN111019814B
公开(公告)日:2022-12-09
申请号:CN201911365808.9
申请日:2019-12-26
Applicant: 中国科学院苏州生物医学工程技术研究所
IPC: C12M1/34 , C12Q1/6869
Abstract: 本发明的一个目的是提供一种基于纳米孔的核酸测序装置,包括核酸测序装置本体,核酸测序装置本体包括基准电压施加组件、驱动电压施加组件、电解液池、交流阻抗检测单元;基准电压施加组件包括电位发生单元、第一功率驱动单元、基准电极;驱动电压施加组件包括振荡发生电路、偏置电压发生电路、第二功率驱动单元、驱动电极;驱动电极形成呈带偏置的正弦波形式的驱动电压;改变偏置电压,以改变待检测核酸分子流通相应纳米孔的速度和/或流动方向,以实现核酸测序。本发明还提供一种基于纳米孔的核酸测序方法。通过测得待检测核酸分子通过纳米孔时的交流阻抗实现测序,工序简单,易控制过孔速度,易解决可能出现的待检测核酸分子堵塞纳米孔的问题。
-
公开(公告)号:CN110044982B
公开(公告)日:2022-04-29
申请号:CN201910287083.X
申请日:2019-04-10
Applicant: 中国科学院苏州生物医学工程技术研究所
IPC: G01N27/27 , G01N27/30 , G01N27/327 , G01N27/333
Abstract: 本发明公开了一种多孔膜层的制备方法,包括将前驱体溶液置于密闭的反应腔室中,使其凝胶化,得到多孔凝胶的步骤。上述的制备方法通过在密闭的反应腔室中使溶胶溶液发生凝胶化,能够避免凝胶的孔隙塌陷,得到孔隙均匀、孔隙率高的多孔膜层。本发明公开了一种电化学传感器,包括第一电极阵列和第二电极阵列,第一电极阵列和第二电极阵列共用第一参比电极,第一参比电极和酶电极的外侧面包覆疏水多孔膜。电化学传感器的集成度高、两个电极阵列共用第一参比电极,能够设置于同一检测通道内,简化了传感器的电极结构。本发明公开了上述电化学传感器的制备方法,制备工序简化、制备效率高。
-
公开(公告)号:CN111090144B
公开(公告)日:2022-03-08
申请号:CN201911416151.4
申请日:2019-12-31
Applicant: 中国科学院苏州生物医学工程技术研究所
Abstract: 本发明提供具有功能化的零模波导孔的制备方法,包括步骤:透明衬底与金属覆盖层形成所述零模波导孔;在所述零模波导孔的侧壁上涂覆感色性激活基团,利用光照射所述感色性激活基团,以使得所述零模波导孔功能化;利用紫外光从所述金属覆盖层的一侧对所述零模波导孔进行照射,使得所述金属覆盖层对应的所述零模波导孔处的DNA聚合酶被灭活,且在所述零模波导孔底部的DNA聚合酶具有活性。本发明还涉及具有功能化的零模波导孔结构。本发明在零模波导孔的不同孔径的孔壁上涂覆不同感色性激活基团,利用不同波长光选择性修饰不同纳米孔侧壁,达到分层功能化的目的;该方法提高了单分子测序中DNA聚合酶单分子占有率,并提高了信噪比。
-
公开(公告)号:CN112485313A
公开(公告)日:2021-03-12
申请号:CN202011281121.X
申请日:2020-11-16
Applicant: 中国科学院苏州生物医学工程技术研究所
IPC: G01N27/327 , G01N27/333 , G01N27/30
Abstract: 本发明提供一种检测病毒的电化学传感器、制备电化学传感器的方法、一种检测病毒的装置及运用上述电化学传感器检测病毒的方法。一种用于检测病毒的电化学传感器,包括:基片,位于所述基片部分表面的工作电极层,位于所述工作电极层表面的电子介体层,位于所述电子介体层背向工作电极层的表面的敏感膜;参比电极层,所述参比电极层位于所述工作电极层的侧部;位于所述参比电极层和所述工作电极层上方的样品承载容器,所述样品承载容器中适于放置待测样品。上述电化学传感器能够快速、准确和灵敏地检测SARS‑CoV‑2。
-
公开(公告)号:CN111979094A
公开(公告)日:2020-11-24
申请号:CN202010886454.9
申请日:2020-08-28
Applicant: 中国科学院苏州生物医学工程技术研究所
Abstract: 本发明提出一种核酸检测装置,包括:机架,设有样品放置位;图像采集器,设在所述机架上并位于样品放置位的上方;光源组件,设在所述机架上并位于样品放置位的上方;所述光源组件用于照射出仅用于激发荧光的光源;遮光部件,至少绕设在所述光源组件的出光面和所述图像采集器的镜头的外周一圈,并且所述遮光部件的底部至少部分延伸至所述样品放置位的外周。本技术方案的设置,样品放置位可放置一定规模数量的样品,在保证灵敏度的前提下,能够大大缩短常规核酸检测方法的检测时间,适用于大规模核酸检测的应用场景;同时遮光部件的设置能够降低荧光信号的噪声,提高了荧光信号所反映的PCR反应产物量的精确度,使得核酸检测装置的检测精度提高。
-
公开(公告)号:CN111235004A
公开(公告)日:2020-06-05
申请号:CN202010054692.3
申请日:2020-01-17
Applicant: 中国科学院苏州生物医学工程技术研究所
Abstract: 本发明公开了一种基因测序芯片的制备方法,包括以下步骤:S1,将半导体激光光源和光波导层集成在同一基底,以易于半导体激光光源出射光与光波导层耦合、传输及用于零模波导外延纳米孔结构阵列荧光分子的激发;S2,在基底表面的光波导层的上方制备纳米尺度环形模板,以方便后续将纳米孔外延凸出于光波导层;S3,采用自组装技术自下而上在纳米尺度环形模板上制备外延凸出于纳米尺度环形模板的外延纳米孔结构阵列,以获得陡直度可控的自组装纳米孔阵列,用于基因测序中单分子荧光激发及检测;S4,对外延纳米孔阵列进行后处理,实现外延纳米孔尺度的调整及表面性质的改进;其纳米孔制作工艺相对简单,信噪比更高且光耦合效率高。
-
公开(公告)号:CN111088250A
公开(公告)日:2020-05-01
申请号:CN201911358593.8
申请日:2019-12-25
Applicant: 中国科学院苏州生物医学工程技术研究所
IPC: C12N15/11 , C12Q1/6806 , C40B50/06
Abstract: 本发明提供了一种mRNA捕获序列,包括通用引物、稀有酶切位点、细胞标签、随机分子标签和PolyT序列,通过引入稀有酶切位点序列,为后续测序接头连接提供了粘性末端,使cDNA双链两端接上两个不同的测序接头。本发明还提供了一种用于mRNA捕获的捕获载体的合成方法及一种高通量单细胞测序文库制备方法。本发明提供的捕获载体通过在基底材料上原位合成引入稀有酶切位点序列的mRNA捕获序列,采用本发明提供的捕获载体来进行单细胞测序文库的制备,提高单细胞捕获效率以及寡核苷酸标签的标记效率,简化构建文库的流程,并且制得的cDNA双链两端接上两个不同的测序接头,保证一个哑铃型测序文库只组装一条引物及DNA聚合酶,三者的一一对应是保证单分子实时测序的前提。
-
公开(公告)号:CN110577983A
公开(公告)日:2019-12-17
申请号:CN201910932328.X
申请日:2019-09-29
Applicant: 中国科学院苏州生物医学工程技术研究所
IPC: C12Q1/6827 , C12Q1/6837
Abstract: 本发明公开了一种高通量单细胞转录组与基因突变整合分析方法,包括以下步骤:1)提供一种高通量单细胞编码芯片;2)进行单细胞表面蛋白分型分析;3)单细胞转录组突变分析;4)建立单细胞表面蛋白分型与突变整合分析的数据库;5)建立高通量单细胞转录组与基因突变整合分析模型。本发明的高通量单细胞转录组与基因突变整合分析方法,通过设计具有微孔空间坐标、细胞核酸标签和分子核酸标签的三重编码技术的高通量单细胞编码芯片,结合单细胞表面蛋白分型、单细胞转录组突变分析及基因测序的方式,可将单细胞的基因突变、转录组和蛋白表达信息一一对应起来,形成高通量单细胞转录组与基因突变整合分析的完整数据库,获得多组学整合分析模型。
-
公开(公告)号:CN110577982A
公开(公告)日:2019-12-17
申请号:CN201910932203.7
申请日:2019-09-29
Applicant: 中国科学院苏州生物医学工程技术研究所
IPC: C12Q1/6827 , C12Q1/6837
Abstract: 本发明公开了一种高通量单细胞转录组与基因突变整合分析编码芯片,所述芯片在其基板上设置有多个微孔,所述微孔具有在一个微孔中只能容纳单个细胞的尺寸和形状,每个所述微孔具有唯一的空间坐标编码,且所述微孔内修饰有若干条已知的核酸序列,所述核酸序列依次包括:Spacer序列;通用引物序列,作为PCR扩增时的引物结合区域;细胞标签,用于标示RNA源自的细胞;分子标签,用于标示结合的RNA;以及Ploy T。本发明提供了一种能用于高通量单细胞转录组与基因突变整合分析的芯片,通过采用微孔空间坐标、细胞核酸标签和分子核酸标签的三重编码技术,可将单细胞的基因突变、转录组和蛋白表达信息一一对应起来。
-
-
-
-
-
-
-
-
-