基于用户操作判断业务风险的方法和装置

    公开(公告)号:CN113409050A

    公开(公告)日:2021-09-17

    申请号:CN202110492178.2

    申请日:2021-05-06

    Abstract: 本说明书实施例提供一种基于用户操作判断业务风险的方法和装置,方法包括:客户端接收针对目标业务的第一操作,目标业务是多种服务业务之一,第一操作是向服务端提交目标业务的业务请求之前的预定操作;响应于第一操作,在第一执行链路中,获取用户通过客户端执行的历史操作序列,将历史操作序列对应的特征序列输入预先训练的风险预测模型,得到目标业务的风险分数,将风险分数发送给服务端;在与第一执行链路并行执行的第二执行链路中,对目标业务进行继续处理,直至向服务端提交目标业务的业务请求;以使服务端根据业务请求和风险分数,判断目标业务是否具有预设类别的风险。能够确保高准确率、低耗时。

    风险识别系统的更新方法及装置、风险识别方法及装置

    公开(公告)号:CN112785157A

    公开(公告)日:2021-05-11

    申请号:CN202110093517.X

    申请日:2021-01-22

    Abstract: 本说明书实施例提供一种风险识别方法。该方法包括:获取待识别的第一事件样本;将该第一事件样本输入针对多个风险域的风险识别系统中;该风险识别系统包括第一表征层,第二表征层和输出层;该第二表征层包括共享表征子层,以及对应该多个风险域的多个特定表征子层;该输出层包括对应该多个风险域的多个输出子层;其中,该第一表征层基于该第一事件样本的事件特征,确定该第一事件样本的第一表征向量;该第二表征层中的各个表征子层各自基于该第一表征向量,确定该第一事件样本的表征子向量;该输出层中的各个输出子层,各自基于所对应风险域的表征子向量和该共享表征子层确定出的表征子向量,确定风险预测结果。

    基于风险识别的模型训练方法、装置和电子设备

    公开(公告)号:CN111932041A

    公开(公告)日:2020-11-13

    申请号:CN202011069728.1

    申请日:2020-10-09

    Abstract: 本说明书实施例公开了一种基于风险识别的模型训练方法、装置及电子设备,具体方案包括:获取无样本标签的第一数据集,第一数据集包含预期具有第一类样本标签的样本数据,在该预期具有第一类样本标签的样本数据中掺杂有具有第二类样本标签的样本数据;对第一数据集预配置第一类样本标签,利用该第一数据集运行配置有第一模型参数的目标模型,生成预测值。利用损失函数判断预测值相比于第一数据集所反映的目标值的损失量,估算损失量对应的第一数据集的统计中心估值,将统计中心估值转换成统计中心期望值,利用损失量和损失量对应的统计中心期望值调整第一模型参数,直到损失量达到预设条件。

    模型训练方法、业务执行方法、装置、介质及电子设备

    公开(公告)号:CN119988973A

    公开(公告)日:2025-05-13

    申请号:CN202510090380.0

    申请日:2025-01-20

    Abstract: 本说明书公开一种模型训练方法、业务执行方法、装置、介质及电子设备,获取目标样本集,而后,针对目标样本集中的每个训练样本,根据该训练样本,确定该训练样本对应的输入信息以及输入信息所对应的引导信息,之后,将输入信息以及引导信息输入到待训练模型中,以使待训练模型根据输入信息以及引导信息,确定输出输入信息对应输出结果时所基于的初始逻辑信息,根据输入信息对应的标准输出结果,通过待训练模型对初始逻辑信息进行调整,得到调整后逻辑信息,根据调整后逻辑信息,确定待训练模型针对输入信息的输出结果,以根据输出结果,训练待训练模型。

    一种数据处理方法、装置及设备

    公开(公告)号:CN119026636B

    公开(公告)日:2025-02-28

    申请号:CN202411514637.2

    申请日:2024-10-28

    Abstract: 本说明书实施例公开了一种数据处理方法、装置及设备,该方法包括:获取用于对图神经网络模型进行模型训练的图结构数据,所述图结构数据中包括节点、边和节点特征;根据预先设定的隐私数据遗忘要求,对所述图结构数据中包含的隐私数据进行定位,并根据定位结果确定所述图结构数据中位于所述隐私数据对应的遗忘范围内的目标子图数据;通过与所述隐私数据遗忘要求对应的类型相匹配的对冲规则,调整所述目标子图数据中的数据生成所述目标子图数据对应的对冲子图数据;基于所述目标子图数据和所述对冲子图数据,通过对比学习的方式对所述图神经网络模型进行模型训练,得到训练后的图神经网络模型。

    一种数据处理方法、装置及设备

    公开(公告)号:CN119026636A

    公开(公告)日:2024-11-26

    申请号:CN202411514637.2

    申请日:2024-10-28

    Abstract: 本说明书实施例公开了一种数据处理方法、装置及设备,该方法包括:获取用于对图神经网络模型进行模型训练的图结构数据,所述图结构数据中包括节点、边和节点特征;根据预先设定的隐私数据遗忘要求,对所述图结构数据中包含的隐私数据进行定位,并根据定位结果确定所述图结构数据中位于所述隐私数据对应的遗忘范围内的目标子图数据;通过与所述隐私数据遗忘要求对应的类型相匹配的对冲规则,调整所述目标子图数据中的数据生成所述目标子图数据对应的对冲子图数据;基于所述目标子图数据和所述对冲子图数据,通过对比学习的方式对所述图神经网络模型进行模型训练,得到训练后的图神经网络模型。

    一种语言模型的预训练方法、装置、介质及电子设备

    公开(公告)号:CN118690848A

    公开(公告)日:2024-09-24

    申请号:CN202410703975.4

    申请日:2024-05-31

    Abstract: 本说明书公开了一种语言模型的预训练方法、装置、介质及电子设备,可获取第一样本文本,第一样本文本为结构化文本,并提取第一样本文本中的各字段。针对提取出的每个字段,根据该字段的属性以及属性值,确定该字段对应的标识符,并根据确定出的各字段对应的标识符,得到第一样本文本对应的标识符序列。将标识符序列输入语言模型,得到标识符序列对应的文本特征,以根据文本特征以及预设的训练任务,对语言模型中的编码端进行预训练。通过使用标识符去对结构化文本中的字段进行替换,进而使用结构化文本对应的标识符序列去训练语言模型,使得训练得到的语言模型可以学习到结构化文本中的特征的关联关系以及潜在关系,提高了语言模型的准确度。

    一种训练样本生成方法及联邦学习方法

    公开(公告)号:CN113850309B

    公开(公告)日:2024-09-17

    申请号:CN202111082326.X

    申请日:2021-09-15

    Abstract: 本说明书一个或多个实施例提供一种训练样本生成及联邦学习方法,应用于至少两个相互协作的数据提供方之间的任一数据提供方,接收协作数据提供方发送的,用于表征每个特征的取值分布的特征值分布集合,并根据特征值分布集合,生成符合该特征值分布集合所表征的分布的数据,将生成的数据作为新的训练样本。由于接收的是表征特征的取值分布的特征值分布集合,使得该数据提供方无法通过接收的数据,反解得到每个用户的数据,保护了数据隐私;且使得该数据提供方得以生成足够的训练样本,实现了在保护数据隐私情况下的数据共享。

Patent Agency Ranking