-
公开(公告)号:CN105491656B
公开(公告)日:2019-08-13
申请号:CN201510653573.9
申请日:2015-10-12
Applicant: 山东大学(威海) , 山东省计算中心(国家超级计算济南中心)
CPC classification number: Y02D70/20
Abstract: 本发明涉及一种面向大规模自组网的轻量级时间同步方法。其解决了现有时间同步方法开销较大且无法在无线传感网中实际应用的问题,其包括基于TDMA思想的网络时间资源划分、节点层次结构构建、节点时间同步以及根据子节点同步精度对同步周期进行自适应地调整。通过测试和仿真发现,本发明能够获得较高的网络同步精度,能够在保证节点间数据正常交互的前提下,根据子节点同步精度自适应地调整同步周期,极大地降低网络同步开销。面向大规模自组网的轻量级时间同步方法能够较好的应用于大规模自组网,有效地降低网络同步功耗。
-
公开(公告)号:CN107154256A
公开(公告)日:2017-09-12
申请号:CN201710503021.9
申请日:2017-06-27
Applicant: 山东省计算中心(国家超级计算济南中心)
IPC: G10K11/175 , G01S5/22
CPC classification number: G10K11/175 , G01S5/22
Abstract: 本发明的基于声源定位的声掩蔽系统,包括语音采集电路、中央处理单元、噪声发生模块、运放电路、幅度可调电路、功放电路和终端;语音采集电路由多路MIC组成,ARM处理器经控制总线接口与幅度可调电路相连接,以调整输出的噪声干扰信号的幅度。本发明的自适应调整方法,首先确定出声源的坐标,再根据终端与声源的距离计算出每个终端处的声压强度,再根据防护信噪比确定每个终端应输出的干扰噪声的强度。本发明应用在保密会议室的声掩蔽系统中,能够从根本上优化声掩蔽系统的防护效果,以最小的噪声干扰获取最佳的防窃听效果,从根本上对声掩蔽系统的防护效果和干扰效果进行了优化,一定程度上减少掩蔽声的噪声污染。
-
公开(公告)号:CN120090863A
公开(公告)日:2025-06-03
申请号:CN202510518762.9
申请日:2025-04-24
Applicant: 齐鲁工业大学(山东省科学院) , 山东省计算中心(国家超级计算济南中心)
IPC: H04L9/40 , H04L9/32 , H04L9/00 , G06F16/901 , G06F16/903
Abstract: 本发明属于保密通信的技术领域,更具体地,涉及一种满足标签和跳数双约束的加密图最短路径查询方法。所述方法包括:数据拥有者向用户发送授权令牌;数据拥有者对原始图进行索引构建,并发送给云服务器;用户利用授权令牌中的密钥加密查询请求,生成查询令牌T,并发送给云服务器;云服务器S接收到用户发送的查询令牌T之后,根据T中的信息进行最短路径查询,并将查询结果发送给用户;用户接收到云服务器S发送的查询结果后,使用授权令牌中的密钥k1进行节点解密,得到明文结果,获取满足查询条件的最短路径。本发明解决了现有技术利用标签进行最短路径查询时搜索空间大,计算复杂的问题。
-
公开(公告)号:CN120046657A
公开(公告)日:2025-05-27
申请号:CN202510117062.9
申请日:2025-01-24
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06N3/045 , G01C13/00 , G06N3/0464 , G06N3/0455 , G06N3/096 , G06F18/15 , G06F18/25 , G06F18/213 , G06F18/214 , G06F30/27 , G06F111/10 , G06F30/28
Abstract: 本公开涉及海浪波高预测技术领域,提出了一种融合多源数据的海浪有效波高预测方法及系统,包括如下步骤:基于获取的浮标观测数据对获取的卫星观测数据进行矫正;将获取的再分析数据和矫正后的卫星观测数据,采用最优插值法进行初步融合;增加一层数据掩膜以标记卫星数据位于融合数据的位置;将标记处理后的初步融合数据输入VQ‑VAE模型,将融合数据压缩为离散潜在变量,输入GPT模型,生成海浪有效波高的预测结果。本公开结合人工智能、数据同化和微调技术,引入数据同化技术融合多源时空稀疏的海洋观测数据和模型模拟结果,并在训练过程中使用微调技术放大观测数据的调整作用,从而提高海浪预测的精度和时效性。
-
公开(公告)号:CN120032191A
公开(公告)日:2025-05-23
申请号:CN202510510088.X
申请日:2025-04-23
Applicant: 齐鲁工业大学(山东省科学院) , 山东省计算中心(国家超级计算济南中心)
IPC: G06V10/764 , G06V10/82 , G06V10/40 , G06N3/0475 , G06N3/094 , G06N3/0455
Abstract: 本发明提出了一种基于动态超前迭代的对抗样本生成方法及系统,属于人工智能安全技术领域;方法包括:对原始图像预处理,生成初始对抗样本;初始化运行参数,将运行参数和初始对抗样本输入到替代模型中进行迭代计算,每次迭代前计算超前因子,根据当前迭代次数判断迭代过程阶段并动态调整超前因子;基于累积动量和动态调整后的超前因子计算超前位置和损失函数梯度,基于损失函数梯度更新累积动量,并生成对抗样本,利用裁剪函数得到最终生成的对抗扰动;当达到最大迭代次数,对原始图像添加最终生成的对抗扰动,生成最终的对抗样本;若否,则重复执行上述步骤。有效解决了固定偏移量的局限性,动量稳定性以及梯度估计准确性的问题。
-
公开(公告)号:CN119808896B
公开(公告)日:2025-05-23
申请号:CN202510296997.8
申请日:2025-03-13
Applicant: 齐鲁工业大学(山东省科学院) , 山东省计算中心(国家超级计算济南中心)
IPC: G06N3/098 , G06F21/62 , G06F18/2132 , G06F18/214
Abstract: 本发明属于隐私保护的技术领域,更具体地,涉及面向保隐私异构去中心化学习的正则约束自适应调整方法。所述方法包括:将每个客户端#imgabs0#的本地模型#imgabs1#划分为共享模型#imgabs2#和保留模型#imgabs3#,对共享模型#imgabs4#进行正则化约束;客户端#imgabs5#使用上一轮聚合后的共享模型#imgabs6#和本地保留模型#imgabs7#,基于本地数据集#imgabs8#进行梯度下降更新;通过KL散度对正则化参数#imgabs9#进行动态更新调整;对共享模型进行差分隐私保护,然后将加噪后的共享模型广播给邻居客户端;客户端i的邻居客户端接收加噪后的共享模型并进行聚合,以得到下一迭代轮次的本地模型。本发明在保护数据隐私的同时,减轻数据异质性和差分隐私噪声对模型性能的负面影响。
-
公开(公告)号:CN119903476A
公开(公告)日:2025-04-29
申请号:CN202411989902.2
申请日:2024-12-31
Applicant: 齐鲁工业大学(山东省科学院) , 山东省计算中心(国家超级计算济南中心)
IPC: G06F18/25 , G06F18/213 , G06N3/0442 , G06N3/08
Abstract: 本发明提出基于时序生成式模型的有效波高的时空预测方法及系统,对目标预测时间对应的目标区域的历史ERA5再分析数据进行编码降维,生成离散变量,有效地降低了数据的维度,同时保留了关键信息;将生成的离散变量和对应的目标区域的历史ERA5再分析数据共同输入至DALSTM模型中,能够综合利用离散变量和初始数据,实现对海浪特征的深入提取和融合,提高后续有效波高预测的准确性和效率。
-
公开(公告)号:CN119892499A
公开(公告)日:2025-04-25
申请号:CN202510360779.6
申请日:2025-03-26
Applicant: 齐鲁工业大学(山东省科学院) , 山东省计算中心(国家超级计算济南中心)
IPC: H04L9/40 , G06F18/15 , G06F18/214 , G06F18/2135 , G06F18/21 , G06F18/2433 , G06N3/0442 , G06N3/0464 , G06N3/0475 , G06N3/0455 , G06N3/094
Abstract: 本发明属于数据分析与网络安全技术领域,具体涉及一种基于物理约束与自适应阈值的虚假数据注入攻击检测和定位方法。所述方法包括:通过预处理多个传感器的测量数据,将数据输入到基于物理约束和时间条件嵌入的WGAN框架进行训练;WGAN生成符合物理规律的高质量合成数据,并结合LSTM捕捉时间序列的长短期特性;随后,利用CNN‑Transformer模型进行全局特征提取和动态阈值生成,结合基于分位数的动态检测机制分析正常数据的分布,精准定位潜在攻击来源;最终,通过循环优化模型架构与参数,提升检测与定位的精度与效率。
-
公开(公告)号:CN119149240B
公开(公告)日:2025-04-08
申请号:CN202411594962.4
申请日:2024-11-11
Applicant: 齐鲁工业大学(山东省科学院) , 山东省计算中心(国家超级计算济南中心)
IPC: G06F9/50
Abstract: 本发明提出面向深度学习的细粒度、干扰感知的GPU调度方法及系统,涉及GPU资源调度技术领域。包括在离线阶段收集工作负载的资源需求信息;生成每个应用程序对应的在GPU上执行的CUDA内核任务;拦截每个应用程序CUDA内核任务的启动请求,并将启动请求对应的CUDA内核任务缓存在每个应用程序对应的任务队列中;对于高优先级应用程序,直接将对应任务队列中的CUDA内核任务提交给GPU调度;对于低优先级应用程序,根据干扰评分以及资源需求判断是否提交CUDA内核任务至GPU进行调度。本发明能够减少任务之间的资源冲突和干扰,实现GPU资源共享,提高GPU资源利用率。
-
公开(公告)号:CN119089982B
公开(公告)日:2025-04-08
申请号:CN202411212448.X
申请日:2024-08-30
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院) , 潍柴动力股份有限公司
IPC: G06N3/098 , G06N3/084 , G06N3/0499 , G06F21/57
Abstract: 本发明涉及应用于攻击场景下的分布式学习聚合方法、存储介质和程序产品。该方法包括:构建包含n个节点和单个参数服务器的异构分布式学习系统;参数服务器获取各个节点的梯度;基于接收的各个节点的梯度,参数服务器获取各个节点梯度的范数与方向;基于各个节点梯度的范数与方向,参数服务器计算各个梯度的保留概率,并进行概率筛选,确定保留梯度;根据梯度筛选结果,参数服务器获取各个保留梯度的平均值,根据各个保留梯度的平均值,进行全局模型参数的迭代优化,利用最终优化后的全局模型参数对异构分布式学习系统进行性能评估。本发明将梯度的范数与方向信息相结合,通过概率筛选实现了在异构分布式机器学习环境下保持拜占庭鲁棒性的目标。
-
-
-
-
-
-
-
-
-