智能电网匿名认证方法、电子设备及存储介质

    公开(公告)号:CN116170144B

    公开(公告)日:2023-07-11

    申请号:CN202310452464.5

    申请日:2023-04-25

    Abstract: 本公开提供一种智能电网匿名认证方法、电子设备及存储介质,智能电网包括:认证方、用户侧和服务方,方法包括:认证方利用椭圆曲线进行初始化,确定认证方的公私钥对,以及确定服务方的身份标识信息;认证方根据服务方的身份标识信息,利用物理不可克隆函数对服务方和用户侧进行注册认证,生成相应的注册信息;用户侧根据相应的注册信息进行本地认证,若认证通过,则用户侧和服务方进行认证;用户侧和服务方各自生成验证数据,并利用验证数据进行相互验证,若验证通过,则用户侧和服务方认证通过,生成会话密钥。认证方无需参与协议认证过程,适于大量用户侧部署场景,利用物理不可克隆函数随会话更新服务方的伪随机身份,实现前向安全性。

    一种基于图对比学习的多模态交通流量预测方法及系统

    公开(公告)号:CN115601960B

    公开(公告)日:2023-06-23

    申请号:CN202211122126.7

    申请日:2022-09-15

    Abstract: 本发明公开了一种基于图对比学习的多模态交通流量预测方法及系统,方法包括:基于历史交通流量数据建立局部和全局流量异构图;对全局和局部流量异构图进行编码得到对应的异构图流量特征;计算局部流量异构图流量特征的互信息来优化局部流量异构图流量特征;多个局部流量异构图流量特征经过注意力机制融合成的全局流量特征,与全局流量异构图流量特征进行图对比学习来优化全局流量异构图流量特征;将优化后的局部和全局流量异构图流量特征输入到空间图卷积神经网络分别预测多模态的交通流量。本发明可以有效地捕获不同出行模式之间的相关性和差异性,有助于更好地捕获多种出行模式之间的依赖关系,从而提升交通流量预测的精度。

    一种基于客户端分类和信息熵的联邦学习方法及装置

    公开(公告)号:CN114723071B

    公开(公告)日:2023-04-07

    申请号:CN202210450751.8

    申请日:2022-04-26

    Abstract: 本发明公开了一种基于客户端分类和信息熵的联邦学习方法及装置,涉及机器学习技术领域,该方法包括:基于客户端在非独立同分布数据场景的偏置程度,将客户端归入第一服务器或第二服务器;在相对应的服务器中训练客户端,得到训练好的客户端模型,并确定客户端模型的本地模型参数,并基于本地模型参数对应的更新第一服务器的第一模型参数和第二服务器的第二模型参数;确定第一服务器和第二服务器满足交互条件,基于第一模型参数和第二模型参数分别对应的权重,更新中央服务器的中央模型参数。本发明可以提升联邦学习的模型准确率,使得联邦学习适用于在不同混合程度的Non‑IID场景。

    基于评论有用性的自动用户评论摘要的方法

    公开(公告)号:CN114429109A

    公开(公告)日:2022-05-03

    申请号:CN202210354868.6

    申请日:2022-04-06

    Abstract: 本发明提供了一种基于评论有用性的自动用户评论摘要的方法,包括依次执行以下步骤:步骤1:预处理;对评论文本进行词形还原;步骤2:评论有用性预测;提取可能会影响评论有用性的特征,用所提取的特征来刻画评论,并使用随机森林分类模型预测评论的有用性;步骤3:基于二元词语的情感‑话题建模;向传统二元词语话题模型中加入情感变量,为评论同时建模话题和情感;步骤4:多要素话题和评论排序。本发明的有益效果是:1.本发明的方法可有效利用一些忽略的重要的评论特征辅助评论有用性预测、辅助后续的排序摘要任务;2.本发明的方法的话题的排序可以节约开发者的时间。

    一种用于源代码漏洞检测的代码属性图压缩方法及装置

    公开(公告)号:CN113987522A

    公开(公告)日:2022-01-28

    申请号:CN202111637333.1

    申请日:2021-12-30

    Abstract: 本发明公开了一种用于源代码漏洞检测的代码属性图压缩方法及装置,所述方法包括如下步骤:根据代码属性图计算基于前K跳邻居的节点邻域信息增益;对节点邻域信息增益进行局部归一化处理;选择归一化处理后的节点邻域信息增益低的节点组成候选删除节点集合,判断候选删除节点集合中是否存在割点,并将割点从候选删除节点集合中移除,最终得到删除节点集合;从代码属性图中去掉删除节点集合中的节点以及与节点相连的边,得到代码属性压缩图。本发明通过计算节点的前K跳邻居增益信息,选择增益信息低的节点进行删除同时保证压缩图的连通性,在尽可能保持代码属性图的节点属性和结构特征的情况下降低其复杂度,从而提高后续模型训练的时空效率。

    面向资源受限场景的三维视线估计方法及装置

    公开(公告)号:CN113807330A

    公开(公告)日:2021-12-17

    申请号:CN202111372548.5

    申请日:2021-11-19

    Abstract: 本发明公开了一种面向资源受限场景的三维视线估计方法及装置,方法包括:构建端到端的视线估计网络,同时进行人脸检测和视线估计,并且采用多任务学习同时对两种数据集进行采样,不同数据训练不同分支;将收集的人脸检测数据集和视线估计数据集进行融合训练,使端到端的视线估计网络同时适应这两种不同的数据域,并采用多任务学习方式训练该网络,得到训练好的模型;对训练好的模型进行压缩以及量化处理,从而使得训练好的模型能部署在边缘设备上,实现三维实现的实时估计。本发明使用端到端的方法,避免对图像进行多次特征提取,提高了运行速度并支持实时视线估计;本发明采用轻量级模型并进行模型压缩,使模型可以在资源受限场景运行。

Patent Agency Ranking