-
公开(公告)号:CN101887806B
公开(公告)日:2012-02-15
申请号:CN200910027997.9
申请日:2009-05-15
Applicant: 南京理工大学
Abstract: 本发明涉及一种纳米复合材料的制备方法,特别是一种氧化石墨烯负载纳米二氧化锰复合材料的制备方法。该氧化石墨烯负载纳米二氧化锰复合材料的制备方法包括以下步骤:步骤一:高速离心使氧化石墨脱水;步骤二:将MnCl2·4H2O、步骤一中脱水的氧化石墨与异丙醇混合配成混合溶液,进行超声;步骤三:将步骤二配好的混合溶液在搅拌下升温;步骤四:将KMnO4与水加入步骤三制备好的混合溶液中,进行反应;步骤五:将步骤四反应得到的黑色沉淀离心、洗涤、干燥、研磨即得到氧化石墨烯负载纳米MnO2复合材料。这种氧化石墨烯负载纳米二氧化锰复合材料的制备方法,是一种低温、快速、操作简单的软化学方法,在温和条件下能够制备具有良好电化学性能的氧化石墨烯负载纳米二氧化锰复合物。
-
公开(公告)号:CN101492569B
公开(公告)日:2011-01-26
申请号:CN200810122841.4
申请日:2008-07-01
Applicant: 南京理工大学
Abstract: 本发明涉及一种氧化石墨片层/聚苯胺复合材料及其制备方法。该复合材料由以下步骤制备而得:将氧化石墨加到分散剂中超声分散,形成均匀分散的单片层氧化石墨混合液;室温下,向第一步所得混合液中滴加苯胺,继续超声分散形成混合液;将氧化剂加入掺杂酸中得到的溶液逐滴加入第二步所得混合液中,搅拌聚合;将第三步得到的混合液离心、洗涤、真空烘干得到氧化石墨片层/聚苯胺复合材料。本发明充分利用氧化石墨大的比表面积,和表面氧基基团形成结合位点,通过氧化石墨单片层上的羧酸基团的化学掺杂作用,与聚苯胺骨架有机地结合在一起,形成氧化石墨/聚苯胺复合物;制备该产品的操作过程简便,其生产周期短,产率高,对设备要求不高。
-
公开(公告)号:CN101887806A
公开(公告)日:2010-11-17
申请号:CN200910027997.9
申请日:2009-05-15
Applicant: 南京理工大学
Abstract: 本发明涉及一种纳米复合材料的制备方法,特别是一种氧化石墨烯负载纳米二氧化锰复合材料的制备方法。该氧化石墨烯负载纳米二氧化锰复合材料的制备方法包括以下步骤:步骤一:高速离心使氧化石墨脱水;步骤二:将MnCl2·4H2O、步骤一中脱水的氧化石墨与异丙醇混合配成混合溶液,进行超声;步骤三:将步骤二配好的混合溶液在搅拌下升温;步骤四:将KMnO4与水加入步骤三制备好的混合溶液中,进行反应;步骤五:将步骤四反应得到的黑色沉淀离心、洗涤、干燥、研磨即得到氧化石墨烯负载纳米MnO2复合材料。这种氧化石墨烯负载纳米二氧化锰复合材料的制备方法,是一种低温、快速、操作简单的软化学方法,在温和条件下能够制备具有良好电化学性能的氧化石墨烯负载纳米二氧化锰复合物。
-
公开(公告)号:CN101161336B
公开(公告)日:2010-06-02
申请号:CN200710135561.2
申请日:2007-11-16
Applicant: 南京理工大学
Abstract: 本发明公开了一种负载纳米金属银粒子的氧化石墨及其制备方法。该氧化石墨由以下步骤制备而得:将氧化石墨加入到分散剂中超声分散,形成混合液;向上一步所得的混合液中加入银盐溶液,搅拌;在暗室条件下进行搅拌;将上一步得到混合液离心、洗涤、真空烘干得到负载金属纳米粒子氧化石墨。本发明充分利用氧化石墨表面的氧基基团形成成核中心,以及氧化石墨片较高的表面积,通过原位还原作用使得纳米金属粒子能够均匀地沉降在氧化石墨片上,从而降低颗粒的团聚性,提高了粒子的比表面积;应用本发明制备的复合物,结合了氧化石墨和金属单质银的性质,可在生物医学、环境、催化等领域有着较好的应用前景和经济效益。
-
公开(公告)号:CN101492569A
公开(公告)日:2009-07-29
申请号:CN200810122841.4
申请日:2008-07-01
Applicant: 南京理工大学
Abstract: 本发明涉及一种氧化石墨片层/聚苯胺复合材料及其制备方法。该复合材料由以下步骤制备而得:将氧化石墨加到分散剂中超声分散,形成均匀分散的单片层氧化石墨混合液;室温下,向第一步所得混合液中滴加苯胺,继续超声分散形成混合液;将氧化剂加入掺杂酸中得到的溶液逐滴加入第二步所得混合液中,搅拌聚合;将第三步得到的混合液离心、洗涤、真空烘干得到氧化石墨片层/聚苯胺复合材料。本发明充分利用氧化石墨大的比表面积,和表面氧基基团形成结合位点,通过氧化石墨单片层上的羧酸基团的化学掺杂作用,与聚苯胺骨架有机地结合在一起,形成氧化石墨/聚苯胺复合物;制备该产品的操作过程简便,其生产周期短,产率高,对设备要求不高。
-
公开(公告)号:CN100443414C
公开(公告)日:2008-12-17
申请号:CN200510094631.5
申请日:2005-09-30
Applicant: 南京理工大学
Abstract: 本发明公开了一种微结构可控纳米氧化铜的制备方法。它包括以下步骤:第一步,将硝酸铜溶于水中,搅拌配成硝酸铜溶液;第二步,将硝酸铜溶液在0~100℃的温度下强烈搅拌;第三步,将氢氧化钠固体一次性快速加入第二步中温度下的硝酸铜溶液中进行化学反应,硝酸铜与氢氧化钠的摩尔比为1∶2~2.5;第四步,将第三步中反应生成的蓝色沉淀悬浮液升温,经搅拌后反应生成黑色沉淀悬浮液,将其离心、洗涤、干燥得到纳米氧化铜。本发明具有如下优点:不同微观形貌的纳米CuO均在低于100℃下生成;所得的纳米CuO粒径小,分散均匀、无团聚;不同微结构纳米CuO的形成中无需加入稳定剂或表面活性剂;通过改变沉淀剂的加入温度可获得分散性好的棒状、丝状、纺锤状的纳米CuO。
-
公开(公告)号:CN119965389A
公开(公告)日:2025-05-09
申请号:CN202510085996.9
申请日:2025-01-20
Applicant: 南京理工大学
Abstract: 本发明属于锌离子电池用电解液技术领域,涉及一种有机羧酸改性的超稳定水系锌离子电池用电解液。本发明通过在基础电解液中加入哌啶羧酸或吡啶羧酸分子,显著提高了锌金属负极在电解液中的稳定性,进而提升了电池性能。首先,添加剂的加入改变了电解液的溶剂化结构,提高了锌负极在电解液中的稳定性,这有助于电池在长时间运行过程中对锌负极副反应的抑制。其次,由于哌啶羧酸或吡啶羧酸的特定结构,该添加剂可吸附在锌负极表面,增大了锌负极与电解液的接触角,这对于静置状态下的电池稳定性是非常重要的。最后,该添加剂的引入还可以调节界面的锌离子传输,促进锌离子均匀沉积,减少锌枝晶的形成,提高锌负极的可逆性和稳定性,从而提高电池充放电效率和循环寿命。
-
-
公开(公告)号:CN119683697A
公开(公告)日:2025-03-25
申请号:CN202411664845.0
申请日:2024-11-20
Applicant: 南京理工大学
IPC: C01G51/42 , C01G53/42 , H01M4/525 , H01M10/0525
Abstract: 本发明属于锂离子电池正极材料技术领域,具体为一种基于化学计量比制备的钴酸锂正极材料及其方法,包括以下步骤:按照待制备钴酸锂正极材料Li1‑xyCoMyx+O2,M为掺杂元素,进行配料,经历一次烧结、粉碎后,再进行二次烧结、粉碎,得到异质元素掺杂的钴酸锂材料。本发明通过调节化学计量比,控制钴酸锂材料中Co的价态只为+3价,可以作为锂离子电池正极材料。该制备过程简单,对设备要求低,所得到的钴酸锂材料容量高,循环性能好,在锂离子电池中表现出优秀的电化学性能。
-
公开(公告)号:CN119581673A
公开(公告)日:2025-03-07
申请号:CN202510135220.3
申请日:2025-02-07
Applicant: 南京理工大学
IPC: H01M10/0568 , H01M10/058 , H01M10/054
Abstract: 本发明公开了一种有机碘化铵基电解液及其制备方法和应用。所述有机碘化铵基电解液由金属碘盐、有机碘化铵和有机溶剂组成。本发明的有机碘化铵基电解液的性质稳定容易制备,将其应用于二次电池,显著提升了电化学性能,在0.02 mA cm‑2电流密度下,其构成的对称电池能够稳定循环超过400 h,大幅降低过电位,在二次电池领域具有广阔的应用前景。
-
-
-
-
-
-
-
-
-