一种视频压缩编码中的资源分配方法

    公开(公告)号:CN101646088B

    公开(公告)日:2011-02-16

    申请号:CN200910089185.7

    申请日:2009-08-03

    Abstract: 本发明公开了一种视频压缩编码中的资源分配方法,包括:对于每个编码的参考帧n0,计算该参考帧丢失造成的瞬时传输失真Dt(n0);再根据该瞬时传输失真计算错误扩散的传播因子;然后,利用瞬时传输失真Dt(n0)和传播因子预测该参考帧丢失造成的帧组级传输失真;根据帧组级传输失真为该参考帧分配资源。应用本发明,能够准确预测参考帧的错误传输对于帧组的影响,从而实现合理的资源分配。

    一种基于H.264的I帧码率控制方法

    公开(公告)号:CN101572806B

    公开(公告)日:2010-12-01

    申请号:CN200910085818.7

    申请日:2009-06-01

    Abstract: 本发明公开了一种基于H.264的I帧码率控制方法,用于依次对当前图像序列中除第一个图像组(GOP)外的其它GOP中的I帧进行码率控制,包括:预先建立I帧的R-QP模型,用于表示I帧的码率与量化参数QP以及图像梯度之间的对应关系,在为当前帧进行码率控制时,计算为当前帧分配的编码比特数R,并将所述R分别代入所述R-QP模型的三个区域,根据当前帧的梯度和所述R计算在每个区域中的QP,在计算得到的QP中,选择与相应区域的QP取值范围一致的QP,作为当前帧的QP。采用本发明所述的I帧码率控制方法,能够实现对I帧进行更有效的码率控制。

    一种基于H.264的I帧码率控制方法

    公开(公告)号:CN101572806A

    公开(公告)日:2009-11-04

    申请号:CN200910085818.7

    申请日:2009-06-01

    Abstract: 本发明公开了一种基于H.264的I帧码率控制方法,用于依次对当前图像序列中除第一个图像组(GOP)外的其它GOP中的I帧进行码率控制,包括:预先建立I帧的R-QP模型,用于表示I帧的码率与量化参数QP以及图像梯度之间的对应关系,在为当前帧进行码率控制时,计算为当前帧分配的编码比特数R,并将所述R分别代入所述R-QP模型的三个区域,根据当前帧的梯度和所述R计算在每个区域中的QP,在计算得到的QP中,选择与相应区域的QP取值范围一致的QP,作为当前帧的QP。采用本发明所述的I帧码率控制方法,能够实现对I帧进行更有效的码率控制。

    基于多模型聚合的动作识别方法、系统、设备和存储介质

    公开(公告)号:CN119360434A

    公开(公告)日:2025-01-24

    申请号:CN202411255283.4

    申请日:2024-09-09

    Abstract: 本发明涉及计算机视觉技术领域,具体公开一种基于多模型聚合的动作识别方法、系统、设备和存储介质,包括:获取目标域的每个样本视频对应的多个目标路径权重和聚合动作识别结果;基于每个样本视频对应的动作识别标签、聚合动作识别结果、实例级可转移性估计指标的量化值以及多个目标路径权重,计算损失值并迭代优化;将待测视频输入至训练好的路径生成网络,得到待测视频对应的多个目标路径权重,并根据待测视频对应的多个目标路径权重及相应训练好的源域模型,得到待测视频的聚合动作识别结果。本发明的方法通过提升源域模型到目标域场景的适应能力,从而提高了模型在目标域场景下的动作识别准确性。

    基于自监督预训练大模型的高动态范围成像方法

    公开(公告)号:CN118714463A

    公开(公告)日:2024-09-27

    申请号:CN202410579410.X

    申请日:2024-05-10

    Abstract: 本发明公开了一种基于自监督预训练大模型的高动态范围成像方法,属于计算机视觉图像技术领域。本发明结合自监督预训练大模型设计了新的高动态范围成像管线,包含基于充分先验的大模型特征提取与赋权叠加、语义融合校正、重建等模块,通过各模块的依次工作,使得多个不同曝光经过预对齐和特征提取后比对语义信息,融合校正到参考图像,共同生成一个无鬼影的高动态范围图像。本发明设计合理,充分利用了大规模图像数据集中的语义信息作为先验来提取得到更优质、便于分析融合的图像特征和利用语义分割信息为鬼影区域作权重干预,减少鬼影的产生同时提升了高动态范围成像的精度。

    基于视觉语言模型的多激励融合零样本病变检测方法

    公开(公告)号:CN117633558A

    公开(公告)日:2024-03-01

    申请号:CN202311650342.3

    申请日:2023-12-04

    Abstract: 本发明提出了基于视觉语言模型的多激励融合零样本病变检测算法,属于多模态医学图像处理技术领域。本发明提出的方法包括步骤:1)将多个激励直接输入模型中,获得对应的中间变量C。2)选择合适的融合策略,对中间变量C进行归类。3)将分类后的中间变量C′分别进行位置聚类、尺寸聚类、类别标签修正、置信度阈值筛选四步操作。4)将筛选后的来自不同激励的进行多级特征融合筛选后,送入小型分类网络中进行进一步的分类判断,得到最终的融合结果。本发明通过集成学习的思想以及深度学习基本网络框架的辅助,打破了原有的单输入网络结构的限制,实现了没有数量限制的多激励融合,从而大大提高零样本条件下,视觉语言模型对医学图像领域病变检测任务的准确率。

    一种基于身体结构划分的双线性行人再识别网络构建方法

    公开(公告)号:CN109614853B

    公开(公告)日:2023-05-05

    申请号:CN201811273872.X

    申请日:2018-10-30

    Abstract: 本发明涉及一种基于身体结构划分的双线性行人再识别网络构建方法,包括以下步骤:对原始行人图像进行身体结构分块得到多个结构子框,将多个子框组合成新的行人图像,构造结构框预测子网络;设置加权的局部损失函数来训练该结构框预测子网络;构造两个子网络,分别以原始行人图像和重组后行人图像作为输入,对应地提取全局行人特征和局部行人特征;设置双线性融合层,并将其作为全局特征和局部特征的融合层,得到最终的行人特征表示;对整体网络进行训练,得到基于身体结构划分的双线性行人再识别模型。本发明结合整体特征和局部特征,充分利用了身体结构信息,通过双线性融合方法获得更具判别力的行人特征,使得系统整体匹配准确率大大提升。

    基于双一致性约束的行人再识别技术

    公开(公告)号:CN113065434A

    公开(公告)日:2021-07-02

    申请号:CN202110312827.6

    申请日:2021-03-24

    Abstract: 本发明设计了一种基于双一致性约束的行人再识别技术,属于计算机视觉图像技术领域。针对目前行人再识别模型过拟合至训练相机,难以泛化到新相机的问题,本发明提出了分布一致性约束以及知识一致性约束,引导模型提取相机无关特征。分布一致性约束要求不同相机的输出特征服从一致分布,由相机分布对齐损失函数实施。知识一致性目的是要求模型在不同相机中学习到的参数更新相似,由知识一致正则化向实施。实验结果表明我们的策略能够提升模型过滤相机信息,提取相机无关特征的能力,有效地增强模型对新相机的泛化能力。

    基于全局特征损失函数的行人再识别方法

    公开(公告)号:CN108960142B

    公开(公告)日:2021-04-27

    申请号:CN201810721744.0

    申请日:2018-07-04

    Abstract: 本发明涉及一种基于全局特征损失函数的行人再识别方法,将全部输入图像分成所有可能图像对,包括表示同一人的同类对和表示不同人的异类对;计算所有可能图像对之间的特征距离,从两类图像对之间的特征距离中分别统计形成全局的距离均值和方差;构建全局特征损失函数并使用该全局特征损失函数在学习过程中减小两个方差以及增大两个均值之间的差;将全局特征损失函数与分类损失函数和验证损失函数联合使用,共同增强特征的学习。本发明设计合理,充分利用了输入全体图像中相比于单张图像更为丰富的信息,使得特征的描述能力性能远远高于单纯的单张图片特征,使得系统整体匹配率大大提高。

    基于双路编解码器的低照度图像亮度增强及超分辨率方法

    公开(公告)号:CN112614061A

    公开(公告)日:2021-04-06

    申请号:CN202011443876.5

    申请日:2020-12-08

    Abstract: 本发明涉及一种基于双路编解码器的低照度图像亮度增强及超分辨率方法,属于计算机视觉图像技术领域。第一步,通过共享参数的编码器对暗光图像进行特征提取,得到一组特征图;第二步,将特征图送入超分辨率解码器进行解码,得到超分辨率特征图;第三步,对第一步中编码器输出的特征图和第二步的超分辨率特征图分别进行池化得到两个特征向量,并使用注意力机制对其加权融合,然后送入低照度解码器进行解码。最后,对两个解码器的输出进行后处理,得到超分辨率后的对应图像。本发明设计合理,针对目前低照度增强方法的缺陷,将低照度增强和图像超分辨率任务相结合,提高了重建图像的视觉效果,整体在低照度增强和超分综合任务上取得了较好的效果。

Patent Agency Ranking