一种腔耦合原子系统制备自旋压缩态的方法

    公开(公告)号:CN113014256B

    公开(公告)日:2023-10-13

    申请号:CN202110201409.X

    申请日:2021-02-23

    Abstract: 本发明公开一种腔耦合原子系统制备自旋压缩态的方法,包括:提供一腔耦合原子系统,所述腔耦合原子系统具有其原子自旋态依赖于原子相互作用的能级结构;向所述腔耦合原子系统施加偏置磁场或者激光,以使原子能量移动,产生非厄米自旋相互作用;记录来自所述腔耦合原子系统的自旋波动信号,从所述自旋波动信号中确定自旋压缩的变化情况;根据所述自旋压缩的变化情况,测量自旋压缩参数小于1时的自旋压缩性质,以产生自旋压缩态。本发明的优点是:实验可操作性强,利用腔与原子相互作用,易于操控原子系统状态,实现的非厄米作用不仅未破坏自旋压缩态,反而维持了自旋压缩效应稳定存在的反直觉物理机制,该方法应用范围广泛。

    一种194nm谱线汞灯的制作装置和方法

    公开(公告)号:CN112768326B

    公开(公告)日:2023-06-20

    申请号:CN202011465220.3

    申请日:2020-12-14

    Abstract: 本发明的一个实施例公开了一种194nm谱线汞灯的制作装置和方法,所述装置包括:充制平台、第一到第四管道、气瓶、针阀、汞同位素泡壳、射频激励模块、三维调整架、第一烤箱、泵、压力表和加热带;第一管道设在充制平台内部;气瓶充有工作气体;针阀安装在第一管道的第一端口;第二管道的第一端口与第一管道的第二端口连通;第三管道的第一端口与第二管道的第二端口连通;第四管道的第一端口与第三管道的第三端口连通;汞同位素泡壳安装在第四管道的第二端口;射频激励模块安装在三维调整架上;三维调整架放置在充制平台上;第一烤箱设在充制平台上;泵与第一管道的第三端口相连;压力表设置在第一管道的第四端口;加热带设于第一管道的外壁上。

    一种激光器裸芯检测组件、工作温度检测装置及方法

    公开(公告)号:CN115931312A

    公开(公告)日:2023-04-07

    申请号:CN202211625028.5

    申请日:2022-12-16

    Abstract: 本申请公开了一种激光器裸芯检测组件、工作温度检测装置及方法,解决了现有技术中激光器裸芯发光位置与光纤探头对接难的问题。激光器裸芯检测组件,其特征在于,包含检测台、支架和光纤探头。所述支架为带有垂直贯通腔的框架结构。所述检测台设置在支架的垂直贯通腔底部开口的正下方。所述光纤探头设置在支架垂直贯通腔上方开口的正上方。本申能够应用于芯片级原子钟等量子精密测量,使激光器与原子气室温度可以轻松匹配,提升指标和成品。

    一种钙原子束光钟的原子束流准直特性的测量装置及方法

    公开(公告)号:CN114659470A

    公开(公告)日:2022-06-24

    申请号:CN202210290307.4

    申请日:2022-03-23

    Abstract: 本申请公开了一种钙原子束光钟的原子束流准直特性的测量装置及方法。测量方法为:利用电动位移平台系统,对探测激光与钙原子共振跃迁的辐射荧光信号进行扫描测量,得到原子束流发射路径上不同位置的钙原子分布,实现原子束流准直特性的测量,包括束流发散角α和偏转角β。测量装置包括钙原子束流真空物理系统,激光锁频光路,探测光路,斩波器,锁相放大器及相应的电控装置。本申请在已有的原子炉口准直管设计基础上,利用原子与激光相互作用的荧光信号强度测量原子束流的z向分布边界,得到原子束流发射路径上不同位置的原子分布,以突破工程应用中加工及装配的限制,进一步提高原子束流量及原子束流准直特性。

    一种冷原子系统自旋压缩态的制备方法

    公开(公告)号:CN113014257B

    公开(公告)日:2022-05-20

    申请号:CN202110201423.X

    申请日:2021-02-23

    Abstract: 本发明公开一种冷原子系统自旋压缩态的制备方法,包括:提供一两分量自旋系统,其包括二维势阱,所述二维势阱具有其原子自旋态依赖于原子相互作用的能级结构;向所述二维势阱施加拉曼光,以使所述二维势阱中由原子相互作用等效产生的自旋相互作用不为零;记录来自二维势阱的自旋波动信号,从所述自旋波动信号中确定自旋压缩的变化情况;根据所述自旋压缩的变化情况,测量自旋压缩参数最小时的自旋压缩性质,以产生自旋压缩态。本发明的优点是:实现简单,突破量子系统测量极限的限制,为提高量子精密测量精度提供新的方法,使得自旋压缩态更加稳定。

    一种集成化原子束型光频标

    公开(公告)号:CN108832926B

    公开(公告)日:2021-12-10

    申请号:CN201810742060.9

    申请日:2018-07-09

    Inventor: 薛潇博 杨仁福

    Abstract: 本发明公开了一种集成化原子束型光频标。该光频标包括电学机柜和光学机柜;所述电学机柜包括控制、测量和显示设备;所述电学机柜向光学机柜各设备供电,并且向光学机柜输出控制信号、频率锁定信号;所述光学机柜包括原子束管、激光器和超稳激光系统;所述光学机柜向电学机柜输出超稳谐振腔信号和原子光谱信号;所述原子束管为集成化的钙原子束密封管;所述激光器包括423nm激光器和657nm激光器。该光频标的设计回避了其他光频标系统面临的激光器多、系统复杂等问题,有望成为首款能够连续运行的商用守时型光频标。本发明光频标的设计原理清晰、具有科学性与工程可实现型,是光频标领域的前沿创新设计。

    一种CPT原子钟频率驯服控制电路

    公开(公告)号:CN108199712B

    公开(公告)日:2021-07-13

    申请号:CN201711247156.X

    申请日:2017-12-01

    Abstract: 本申请公开了一种CPT原子钟频率驯服控制电路,包括:通过频率驯服控制电路能够基于频率倍频和量化时延的短时间间隔测量方法,精确测量出CPT原子钟的频率偏移,并根据频率偏移大小,提出不同的频率驯服控制方法,实现短时间内驯服CPT原子钟的频率,以抑制CPT原子钟的频率漂移问题,并且本申请实施例提供的实现方式结构简单,易于调试,提升了CPT原子钟频率驯服的自动控制和自主运行,使得CPT原子钟频率驯服变得灵活和操作方便。

    一种腔耦合原子系统制备自旋压缩态的方法

    公开(公告)号:CN113014256A

    公开(公告)日:2021-06-22

    申请号:CN202110201409.X

    申请日:2021-02-23

    Abstract: 本发明公开一种腔耦合原子系统制备自旋压缩态的方法,包括:提供一腔耦合原子系统,所述腔耦合原子系统具有其原子自旋态依赖于原子相互作用的能级结构;向所述腔耦合原子系统施加偏置磁场或者激光,以使原子能量移动,产生非厄米自旋相互作用;记录来自所述腔耦合原子系统的自旋波动信号,从所述自旋波动信号中确定自旋压缩的变化情况;根据所述自旋压缩的变化情况,测量自旋压缩参数小于1时的自旋压缩性质,以产生自旋压缩态。本发明的优点是:实验可操作性强,利用腔与原子相互作用,易于操控原子系统状态,实现的非厄米作用不仅未破坏自旋压缩态,反而维持了自旋压缩效应稳定存在的反直觉物理机制,该方法应用范围广泛。

    一种钙原子束光频标探测光自动锁定方法

    公开(公告)号:CN112260057A

    公开(公告)日:2021-01-22

    申请号:CN202011007425.7

    申请日:2020-09-23

    Abstract: 本发明公开一种钙原子束光频标探测光自动锁定方法,解决现有方法失锁后无法自动重新锁定的问题。所述方法,包含以下步骤:粗扫描确定第一偏置电压和第一电流:在设定的电压扫描范围和电流扫描范围内进行扫描,采集前窗荧光信号的幅度,确定第一偏置电压和第一电流;精细扫描确定锁定点:调节激光管电流为第一电流,在第一偏置电压和第一峰值电压之间,按第二电压步进调节激光器外腔PZT电压进行扫描,后窗参考荧光信号峰值对应的采样点为前窗荧光信号的锁定点,记录所述锁定点对应的激光器外腔PZT电压为第二偏置电压;调节激光管电流为第一电流,激光器外腔PZT电压为第二偏置电压,采用PID技术实现频率自动锁定。本发明可实现失锁后重新锁定。

Patent Agency Ranking