-
公开(公告)号:CN116630820A
公开(公告)日:2023-08-22
申请号:CN202310530434.1
申请日:2023-05-11
Applicant: 北京卫星信息工程研究所
IPC: G06V20/13 , G06V10/26 , G06V10/32 , G06V10/44 , G06V10/762 , G06V10/764 , G06V10/80 , G06V10/82 , G06N3/0464 , G06N3/08
Abstract: 本发明涉及一种光学遥感数据星上并行处理方法与装置,所述装置包括:主控与预处理模块(100),用于通过星务轮询方式获取光学遥感数据并进行预处理与切片处理;至少一个数据处理模块(200),用于对所述预处理与切片处理后的光学遥感数据进行目标的并行检测识别或语义分割,再将结果回传至所述主控与预处理模块(100);电源模块(300),用于对所述主控与预处理模块(100)和所述数据处理模块(200)上电;背板(400),用于连接所述主控与预处理模块(100)、所述数据处理模块(200)和所述电源模块(300)。通过实施本发明的上述方案,可用于光学遥感卫星数据的在轨并行处理,从而实现目标的在轨实时检测识别以及光学遥感数据的在轨实时语义分割。
-
公开(公告)号:CN116563680A
公开(公告)日:2023-08-08
申请号:CN202310493846.2
申请日:2023-05-05
Applicant: 北京卫星信息工程研究所
IPC: G06V10/80 , G06V10/52 , G06V10/764 , G06V10/774 , G06V10/82 , G06V20/10
Abstract: 本发明涉及一种基于高斯混合模型的遥感图像特征融合方法、电子设备,通过特征提取主干网络提取输入遥感图像特征,得到不同层级位置的特征图;构建特征融合网络并对不同层级位置的特征图进行融合,获得遥感图像目标的多特征图;构建多个高斯混合模型拟合多特征图,获得高斯混合模型的参数;对多个高斯混合模型进行加权平均融合,利用融合后的高斯混合模型生成数据并与原始特征图拼接;利用融合特征图输入目标检测网络的检测头,进行遥感图像检测,计算分类、位置预测损失;重复执行上述步骤,训练检测模型;利用检测模型进行检测。本发明,提升了模型分类和定位出遥感图像中的感兴趣目标的能力,提高遥感图像目标定位准确性,提高模型检测能力。
-
公开(公告)号:CN116403122A
公开(公告)日:2023-07-07
申请号:CN202310403526.3
申请日:2023-04-14
Applicant: 北京卫星信息工程研究所
IPC: G06V20/13 , G06V10/764 , G06V10/25
Abstract: 本发明涉及一种无锚框定向目标检测方法,包括:S100,获取至少一幅包含待检测目标的卫星遥感图像;S200,以Resnet101为主干网络,提取所述卫星遥感图像的降采样4、8、16、32倍的特征C2、C3、C4、C5;S300,根据C2、C3、C4、C5构建FPN网络;S400,将所述FPN网络中的上采样和横向连接,替换为特征选择与对齐,对C2、C3、C4、C5进行融合处理,得到多尺度特征P3、P4、P5、P6、P7;S500,采用旋转边界框进行目标检测;S600,对目标检测算法进行优化,驱动目标检测网络在训练过程中学习目标的遥感方向信息。本发明可提高遥感目标检测对空间尺度大小与方向任意的目标的检测能力。
-
公开(公告)号:CN116403007A
公开(公告)日:2023-07-07
申请号:CN202310390010.X
申请日:2023-04-12
Applicant: 北京卫星信息工程研究所
IPC: G06V10/74 , G06V10/62 , G06V10/82 , G06V20/10 , G06V10/766 , G06V10/764 , G06V10/80
Abstract: 本发明涉及一种基于目标向量的遥感影像变化检测方法,包括:使用向量对遥感序列影像进行样本标注;构建目标向量检测模型,将已标注的遥感序列影像输入所述目标向量检测模型进行训练;利用所述目标向量检测模型对同一区域不同时间的遥感影像中的所有目标进行检测,得到不同集合的目标向量;利用变化相似度算法计算不同集合中目标向量的相似度距离,获得目标的变化情况。通过实施本发明的上述方案,可以实现遥感影像中目标变化前后的高精度匹配和精细化的变化检测。
-
公开(公告)号:CN115100532B
公开(公告)日:2023-04-07
申请号:CN202210921934.3
申请日:2022-08-02
Applicant: 北京卫星信息工程研究所
IPC: G06V20/10 , G06N3/0464 , G06N3/0985 , G06N5/02 , G06N5/04 , G06V10/764 , G06V10/766 , G06V10/77 , G06V10/82
Abstract: 本发明涉及一种小样本遥感图像目标检测方法和系统,所述小样本遥感图像目标检测方法包括:利用基础训练网络训练基类数据,其中,所述基础训练网络包括针对遥感图像建立的知识图谱;利用微调训练网络训练小样本数据,所述小样本数据包括经所述基础训练网络训练后的基类数据和新类数据。本发明的基础训练网络上训练完成的基类数据与新类数据一起构成微调训练网络的样本数据集,使得基础训练阶段训练好的网络可以通过微调训练很好地泛化到当前遥感图像小样本目标检测任务中,且知识图谱的知识输入可以为网络提供先验知识,可以在样本数量少、样本获取难度大的情况下,高效地训练出具备良好性能的目标检测网络。
-
公开(公告)号:CN115908908A
公开(公告)日:2023-04-04
申请号:CN202211425887.X
申请日:2022-11-14
Applicant: 北京卫星信息工程研究所
IPC: G06V10/764 , G06V20/10 , G06V10/82 , G06V10/22 , G06V10/40 , G06V10/774 , G06N3/0464 , G06N3/047 , G06N3/048 , G06N3/08
Abstract: 本发明涉及一种基于图注意力网络的遥感图像聚集型目标识别方法及装置,所述方法包括:构建并训练基于Oriented R‑CNN的目标候选区域检测定位模型;采用训练好的基于Oriented R‑CNN的目标候选区域检测定位模型检测遥感图像中目标的候选区域,并提取对应的特征,根据所述候选区域的位置关系构建图结构数据集;将所述候选区域的位置编码引入图注意力网络,构建图节点分类网络模型;利用所述图结构数据集训练所述图节点分类网络模型,对遥感图像中目标的候选区域的特征进行聚合和更新,实现目标的分类。本发明可以对遥感图像中尺寸小、外观模糊的聚集型目标进行准确识别并提高识别精度。
-
公开(公告)号:CN115019184B
公开(公告)日:2023-02-07
申请号:CN202210900866.2
申请日:2022-07-28
Applicant: 北京卫星信息工程研究所
Abstract: 本发明涉及一种基于遥感影像的石漠化程度自动分级方法及装置,该方法包括:获取石漠化区域的原始遥感影像和高程数据,并进行预处理;利用处理后的遥感影像反演所述石漠化区域的基岩裸露率和植被覆盖度,利用处理后的高程数据计算坡度数据;将所述基岩裸露率、所述植被覆盖度、所述坡度数据和所述原始遥感影像进行融合,得到样本数据,对所述样本数据的石漠化程度进行等级区分和标注,获得标签文件;构建CKRD‑DNN模型,并利用所述样本数据和所述标签文件进行训练;利用训练好的CKRD‑DNN模型对待分级的石漠化区域遥感影像进行识别和判定,得到分级结果。本发明可以实现大范围石漠化区域不同发育程度石漠化的高效自动分级和判定。
-
公开(公告)号:CN115115939A
公开(公告)日:2022-09-27
申请号:CN202210899281.3
申请日:2022-07-28
Applicant: 北京卫星信息工程研究所
Abstract: 本发明涉及一种基于特征注意力机制的遥感图像目标细粒度识别方法,包括:对原始遥感图像的目标数据和目标特征数据进行标注;对所述原始遥感图像、所述标注的目标数据和目标特征数据进行处理和增强,获得三组数据集;构建目标‑特征注意力模型;将处理和增强后的三组数据集输入所述目标‑特征注意力模型进行训练,利用训练好的目标‑特征注意力模型完成所述原始遥感图像中的目标细粒度的型号级识别。本发明可以实现遥感影像飞机等目标的高精度精细化型号级识别。
-
公开(公告)号:CN115100652A
公开(公告)日:2022-09-23
申请号:CN202210921803.5
申请日:2022-08-02
Applicant: 北京卫星信息工程研究所
Abstract: 本发明涉及一种基于高分遥感图像的电子地图自动化生成方法,包括:建立全景分割模型,利用全景分割模型提取遥感图像的特征,生成遥感图像特征图;利用全景分割模型的实例分割分支对遥感图像特征图的目标进行实例标注,利用全景分割模型的语义分割分支对遥感图像特征图的地物要素进行语义标注,获得实例标签和语义标签;对实例标签和语义标签进行空间层级排序,获取每个标签的像素排序得分;利用像素排序得分为基准生成全景分割图像;利用边缘优化算法对全景分割图像进行优化;利用位图矢量化成图方法对优化后的全景分割图像生成电子地图。本发明可由高分辨率遥感影像生成电子地图,提升对目标实例分割和地物要素边缘的提取和优化能力。
-
公开(公告)号:CN115019183A
公开(公告)日:2022-09-06
申请号:CN202210900359.9
申请日:2022-07-28
Applicant: 北京卫星信息工程研究所
Abstract: 本发明涉及一种基于知识蒸馏和图像重构的遥感影像模型迁移方法,包括:在样本充足和标注完整的数据集A中训练第一目标检测模型,获得教师模型;利用知识蒸馏对所述教师模型进行压缩,获得学生模型,并在样本不足的数据集B中进行训练;利用训练后的学生模型对与所述数据集B的数据类型相同的待测试数据进行判别,获得第一判别结果;重构所述待测试数据,使所述待测试数据与所述数据集A的数据类型相同,利用所述教师模型对重构后的待测试数据进行判别,获得第二判别结果;将所述第一判别结果和所述第二判别结果的全连接层进行加权融合,获得用于判别所述待测试数据的第二目标检测模型。该方法可实现不同类型遥感影像的模型迁移。
-
-
-
-
-
-
-
-
-