-
公开(公告)号:CN117291941B
公开(公告)日:2024-07-09
申请号:CN202311329962.7
申请日:2023-10-16
Applicant: 齐鲁工业大学(山东省科学院) , 山东省人工智能研究院 , 山东省计算中心(国家超级计算济南中心)
Abstract: 一种基于边界和中心点特征辅助的细胞核分割方法,涉及医学图像处理领域,通过编码器和解码器网络实现训练,使得训练后的网络能够从病理图像中找到细胞核的边界、中心点、细胞核这些外观特征,实现了由点到线再到面的特征约束,通过设计特定的中心点损失函数与边界加权模块bwm,保证了输入图片信息的完整性,提高了对细胞核分割的准确性。同时借助计算机视觉和图像处理技术,可以实现自动化的细胞核分割,大大提高了分割的准确性和效率。既可以节省人力资源,也加快研究和诊断的进程。
-
公开(公告)号:CN117338310B
公开(公告)日:2024-04-09
申请号:CN202311523667.5
申请日:2023-11-16
Applicant: 齐鲁工业大学(山东省科学院) , 山东省人工智能研究院 , 山东省计算中心(国家超级计算济南中心)
IPC: A61B5/346
Abstract: 一种基于对比学习和多尺度特征提取的心电信号分类方法,涉及心电信号分类技术领域,SE‑ResNeXt‑CAN网络模型由浅层特征提取模块、第一SERM模块、第二SERM模块、第一CARM模块、第二CARM模块构成,SE‑ResNeXt‑CAN网络模型通过多个模块的组合和优化,自适应地学习各个通道之间的关联性,扩大感受野,充分捕捉关键特征,提升了心电信号分类任务的性能和泛化能力。
-
公开(公告)号:CN116509415B
公开(公告)日:2024-01-26
申请号:CN202310431752.2
申请日:2023-04-21
Applicant: 山东省人工智能研究院 , 齐鲁工业大学(山东省科学院) , 山东省计算中心(国家超级计算济南中心)
Abstract: 一种基于信号分量的单元化形态学特征的降噪方法,对基线漂移、电极运动噪声、肌电噪声与心电信号频带有一部分重叠进行和很好的分离识别,并通过心电形态学特征算法有效消除了重叠频带部分的噪声。对强噪声干扰的心电信号,波形形态发生严重失真,该算法降噪效果明显,可以在心电波形严重失真的情况下很好的还原信号波性特征。同时该算法泛化性好,对不同类型的心电信号降噪性能同样有效。
-
公开(公告)号:CN116509415A
公开(公告)日:2023-08-01
申请号:CN202310431752.2
申请日:2023-04-21
Applicant: 山东省人工智能研究院 , 齐鲁工业大学(山东省科学院) , 山东省计算中心(国家超级计算济南中心)
Abstract: 一种基于信号分量的单元化形态学特征的降噪方法,对基线漂移、电极运动噪声、肌电噪声与心电信号频带有一部分重叠进行和很好的分离识别,并通过心电形态学特征算法有效消除了重叠频带部分的噪声。对强噪声干扰的心电信号,波形形态发生严重失真,该算法降噪效果明显,可以在心电波形严重失真的情况下很好的还原信号波性特征。同时该算法泛化性好,对不同类型的心电信号降噪性能同样有效。
-
公开(公告)号:CN115357783B
公开(公告)日:2023-06-06
申请号:CN202210918943.7
申请日:2022-08-01
Applicant: 山东省计算中心(国家超级计算济南中心) , 山东省人工智能研究院 , 齐鲁工业大学
IPC: G06F16/9535 , G06F16/958 , G06F16/335 , G06F40/289 , G06F40/30
Abstract: 一种基于结构化多兴趣协同的企业服务快讯推荐方法,通过附加选择器以增强快讯的特征,有效增强了最终的企业服务快讯表示;本发明提出的用户兴趣表示学习方法通过构建用户兴趣结构无向图,利用图注意力网络可以一种显示的方式结构化编码用户的多种潜在兴趣,这可以提取更加精确的用户兴趣表示;本发明提出的用户兴趣表示学习方法充分考虑了用户多种潜在兴趣之间的相互作用,利用自注意力网络模拟兴趣之间的作用关系有效增强了用户兴趣表示;本发明得益于良好的企业服务快讯表示学习方法和用户兴趣表示学习方法,有效提高了企业服务快讯推荐的准确性。
-
公开(公告)号:CN115329211B
公开(公告)日:2023-06-06
申请号:CN202210918860.8
申请日:2022-08-01
Applicant: 山东省计算中心(国家超级计算济南中心) , 山东省人工智能研究院 , 齐鲁工业大学
IPC: G06F16/9536 , G06F16/958 , G06N3/042 , G06N3/09 , G06Q50/00
Abstract: 一种基于自监督学习和图神经网络的个性化兴趣推荐方法,使用自监督的图对比学习的方法预训练兴趣点特征表示向量,深度学习兴趣点之间的流行度访问行为模式,训练图编码器模型,使兴趣点特征向量融合空间关联性和交互行为关联性。同时在下游推荐任务中将目标用户个人的兴趣点交互图通过预训练中训练好的图编码器模型学习用户个人的长期行为模式作为长期兴趣,以达到个性化的目的。大大提高了模型的泛化能力和推荐召回率,实现根据兴趣个性化解决用户出行需求的目的。
-
公开(公告)号:CN115357805A
公开(公告)日:2022-11-18
申请号:CN202210920144.3
申请日:2022-08-02
Applicant: 山东省计算中心(国家超级计算济南中心) , 山东省人工智能研究院 , 齐鲁工业大学
IPC: G06F16/9536 , G06N3/04 , G06N3/08
Abstract: 一种基于内外部视角的群组推荐方法,基于外部视角,将群组与餐厅和用户与餐厅的交互看作两个独立的过程,利用图卷积分别学习这两种交互行为中隐含的偏好信息,使模型学习到用户作为个体时的个人偏好以及群组作为整体时的固定偏好。基于内部视角,将群组决策过程中成员之间存在的互动商讨过程考虑在内,采用图注意力神经网络学习此过程中产生的成员间的相互影响,使模型能够准确捕捉受影响后的成员偏好变化。基于内部视角,不同成员在群组中的作用与影响力不同,导致在群组决策中的贡献度不同,采用注意力机制学习成员贡献度大小,能够以一种动态的方式学习聚合策略,更好的权衡不同成员的偏好,解决偏好冲突问题。
-
公开(公告)号:CN115357785A
公开(公告)日:2022-11-18
申请号:CN202210936398.4
申请日:2022-08-05
Applicant: 山东省计算中心(国家超级计算济南中心) , 山东省人工智能研究院 , 齐鲁工业大学
IPC: G06F16/9535 , G06F16/958 , G06F16/335 , G06F40/289 , G06F40/30
Abstract: 一种基于语义交互和局部激活的企业资讯推荐方法,通过SIN企业资讯编码器可以在标题和内容之间进行单词级语义交互,缓解了独立编码标题和内容时的语义偏差,有效增强了企业资讯表示。通过LAU用户编码器更加符合用户的真实的行为习惯,可以分区域处理用户点击历史,以细粒度的方式有效捕获用户的各种潜在兴趣。提出的LAU用户编码器可以利用候选企业资讯激活相关的关键性潜在兴趣,并结合注意力机制使其保留到了最终交互阶段,这有效增强了用户兴趣表示;上述三点的成功使得我们的方法有效提高了企业资讯推荐的准确性。
-
公开(公告)号:CN114741572A
公开(公告)日:2022-07-12
申请号:CN202210364463.0
申请日:2022-04-08
Applicant: 山东省人工智能研究院 , 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学
IPC: G06F16/9035 , G06F16/9038 , G06F16/906
Abstract: 一种基于图卷积神经网络群组发现的群组推荐方法,根据电影主题类别将用户—电影交互数据划分为数据子集,使用各数据子集构建用户—电影交互图,通过图卷积网络从交互图中学习用户/电影嵌入表示,然后利用Kmeans算法进行群组发现,通过均值融合策略,将群组成员嵌入表示融合为群组嵌入表示,最后将群组嵌入表示与电影嵌入表示进行内积得到群组对电影的预测偏好得分,根据偏好得分向群组推荐电影。侧重于群组发现阶段的用户嵌入获取方法,考虑了群组的内部一致性对群组推荐算法性能的影响,将用户—电影的交互信息融入用户/电影的特征信息之中,提高了群组发现中的用户嵌入表示的准确度,进而增强了群组推荐算法的性能。
-
公开(公告)号:CN113342904A
公开(公告)日:2021-09-03
申请号:CN202110354107.6
申请日:2021-04-01
Applicant: 山东省人工智能研究院 , 山东省计算中心(国家超级计算济南中心) , 山东科技大学
IPC: G06F16/28 , G06F16/2458 , G06Q50/10
Abstract: 一种基于企业特征传播的企业服务推荐方法,利用企业特征间关联的知识图谱,利用目标服务对交互记录中的企业进行特征传播,自动挖掘企业关联路径,刻画出企业之间关联特征,与企业特征结合,利用新的损失函数结合深度学习得到企业与服务的交互概率,能够解决通用框架仅使用交互数据以及基本信息而偏离企业间关系而导致的推荐效果不好等问题,实现对企业的服务方案精准推荐。通过对企业间关系自动挖掘,发现企业间关联路径,及企业特征进行交互预测评分,通过目标服务对交互记录中企业的特征传播以及交互框架,来解决企业对服务方案选择困难的问题。
-
-
-
-
-
-
-
-
-