一种实体关系自动识别方法及系统

    公开(公告)号:CN107944559B

    公开(公告)日:2021-04-27

    申请号:CN201711190865.9

    申请日:2017-11-24

    Abstract: 本发明涉及一种实体关系自动识别方法及系统,该方法包括:训练卷积神经网络得到实体关系识别模型;获取对应待确认实体组的相关语料库;将相关语料进行分词,并将分词得到的相关词语转化为相关词向量;将相关词向量按相关语料转化为矩阵作为实体关系识别模型的输入,得到相关关系种类和相关关系种类的相似度值,将相似度值高的相关关系种类作为待确认实体组的关系种类。本发明通过锻炼卷积神经网络作为实体关系识别模型,在出现新增实体时,计算得到一系列新增实体组的关系种类,并得出每一项关系种类的相似度值,通过具体的数值来确定相关关系种类的程度,提高得到的新增实体组之间关系种类的准确性。

    基于机器学习的微信金融消息分析方法及系统

    公开(公告)号:CN111680225A

    公开(公告)日:2020-09-18

    申请号:CN202010338132.0

    申请日:2020-04-26

    Abstract: 本发明公开了一种基于机器学习的微信消息分析方法,包括:步骤一、构建训练语料库;步骤二、建立词汇向量表;步骤三和步骤四、构建和训练卷积神经网络;步骤五、将待分析的微信消息对应的多个词汇对应的词向量构成的词向量矩阵输入至训练得到的卷积神经网络,输出得到该微信消息对应的所有标签的概率分布情况。本发明具有精准预测微信消息所属的金融分类标签的有益效果。本方法还公开了一种基于机器学习的微信消息分析系统,包括:数据采集组件;训练语料库;文本预处理组件;模型训练组件;源数据分类组件。本系统具有精准预测微信消息所属的金融分类标签的有益效果。

Patent Agency Ranking