-
公开(公告)号:CN101935381B
公开(公告)日:2012-10-31
申请号:CN201010256889.1
申请日:2010-08-19
Applicant: 苏州大学
IPC: C08F292/00 , C08F112/08 , C08F120/14 , C08F2/22
Abstract: 本发明属于有机/无机微球制备领域,具体涉及一种采用无皂乳液聚合法在无机纳米磁性粒子表面接枝有机聚合物的方法。包括以下步骤:(1)按照现有技术,制备得到表面修饰有可逆加成断裂链转移试剂的磁性纳米粒子,其中Z基团为咔唑,R基团为带苄基的磁性氧化硅复合纳米粒子;(2)以步骤(1)所得表面修饰有可逆加成断裂链转移试剂的磁性纳米粒子、油溶性单体、引发剂和水组成聚合体系,搅拌条件下,惰性气氛中,进行无皂乳液体系中的可逆加成断裂链转移聚合,离心分离后得到带有聚合物壳、磁性氧化硅纳米粒子为核的磁性纳米粒子;本发明一方面避免了有机溶剂的使用,避免了乳化剂的使用,并且聚合过程可控。
-
公开(公告)号:CN102731712A
公开(公告)日:2012-10-17
申请号:CN201210242900.8
申请日:2012-07-15
Applicant: 苏州大学
IPC: C08F220/06 , C08F220/44 , C08F8/48
Abstract: 本发明公开了一种一步法制备环状聚合物的方法,其特征在于:将由三级自由基单体、引发剂、二级自由基单体、催化剂、配位剂和叠氮化试剂构成的聚合体系溶于溶剂,无氧环境,60~65℃下反应3~7天;其中,引发剂和二级自由基单体的摩尔比值为N,3≥N>1.5;叠氮化钠和二级自由基单体的摩尔比值为M,2≥M>1;三级自由基单体和二级自由基单体的总量与引发剂的摩尔比值≥100。本发明步骤少,操作简单,节省了原料和设备,反应周期短,并且基本没有副反应,无需进行麻烦的提纯操作。
-
公开(公告)号:CN102617855A
公开(公告)日:2012-08-01
申请号:CN201210108724.9
申请日:2012-04-13
Applicant: 苏州大学
Abstract: 本发明公开了一种环状聚合物及其制备方法,所述环状聚合物为环状主链苯基偶氮萘聚合物。首先制备获得单体EPNA,然后采用热催化的固相反应对单体EPNA进行“点击”反应逐步聚合,获得α-叠氮基团和ω-炔基的线状-PEPNA;最后通过叠氮/炔基CuAAC方法在极稀溶液中对线状-PEPNA进行关环反应,获得环状-PEPNA。本发明合成的环状主链苯基偶氮萘聚合物相对于其具有相同分子量的线状聚聚合物,具有较高的玻璃化转变温度(Tg),强的荧光发射,长的荧光寿命和深的表面起伏光栅(SRG)槽深。
-
公开(公告)号:CN102585052A
公开(公告)日:2012-07-18
申请号:CN201210058174.4
申请日:2012-03-07
Applicant: 苏州大学
IPC: C08F8/48 , C08F20/14 , C08F12/08 , C08F20/54 , C08F112/08
Abstract: 本发明属于环状化合物的制备,涉及一种制备环状聚苯乙烯的方法及装置。所述制备环状聚合物的装置包括:一反应室,一冷凝液容纳室,一冷凝回流装置。本发明中首次通过利用混合溶剂中各溶剂的沸点和挥发性以及对于聚合物溶解性能的差异,采用具有特殊回流的反应装置,通过调控体系温度,循环蒸馏冷凝溶剂得到极稀的线状聚合物溶液的方法,合成了环状聚合物。本发明中使用的设备简单,操作方便,产物易分离纯化;可重复投入原料和使用反应溶液,降低了产品的单位消耗,节约了成本,是一种单体应用范围广的简便、经济和高效的制备环状聚合物的方法。
-
公开(公告)号:CN102504145A
公开(公告)日:2012-06-20
申请号:CN201110361574.8
申请日:2011-11-15
Applicant: 苏州大学
IPC: C08F292/00
Abstract: 本发明公开了一种聚合物接枝氧化石墨烯的制备方法,包括如下步骤:(1)将石墨用五氧化二磷预氧化,得到预氧化石墨;(2)用高锰酸钾和浓硫酸氧化上述预氧化石墨,洗涤,得到表面含有羟基的氧化石墨烯;(3)将上述表面含有羟基的氧化石墨烯和烯类单体混合,加热并通氮气,滴加含有四价铈离子的溶液,在通氮气的情况下搅拌反应1~6小时,经过滤、洗涤、干燥,得到所述聚合物接枝氧化石墨烯。本发明开发了一种新的制备聚合物接枝氧化石墨烯的方法,在氧化石墨烯的基础上通过氧化还原聚合方法只用一步就得到氧化石墨烯表面接枝聚合物,步骤简便、反应较安全、环保、效率较高。
-
公开(公告)号:CN102432745A
公开(公告)日:2012-05-02
申请号:CN201110384999.0
申请日:2011-11-28
Applicant: 苏州大学
IPC: C08F220/32 , C08F220/34 , C08F2/38
Abstract: 本发明属于生物材料制备领域,涉及一种采用可逆加成—断裂链转移聚合方法制备具有“活性”特征且共聚物组成可调的含有环氧和叔胺双功能性基团共聚物的方法:以单体、自由基引发剂、链转移剂构成聚合体系,然后在惰性气体保护下进行可逆加成—断裂链转移聚合,制备得到含有环氧和叔胺双官能团共聚物;所述单体为由甲基丙烯酸缩水甘油酯GMA和甲基丙烯酸二甲氨乙酯DMAEMA构成的组合物;本发明首次用RAFT共聚合的方法,实现GMA和DMAEMA的活性共聚,且其共聚物组成可根据初始投料比进行调节;本发明采用活性/可控自由基聚合,所得聚合物的分子量可设计,分子量分布较窄;并且聚合物端基仍然有“活性”,可用来进一步可控合成一些具有拓扑结构的嵌段、接枝共聚物。
-
公开(公告)号:CN102391413A
公开(公告)日:2012-03-28
申请号:CN201110248666.5
申请日:2011-08-24
Applicant: 苏州大学
IPC: C08F220/34 , C08F220/36 , C08F120/36 , C08F2/38
Abstract: 本发明公开了一种侧链功能化聚合物及其制备方法,由单体、引发剂、链转移剂、催化剂、配位剂和偶合组分构成聚合体系,所述单体为甲基丙烯酸叠氮十一酯,所述催化剂为铜;所述配位剂为N,N,N′,N″,N″-五甲基二亚乙基三胺,所述偶合组分为4-甲氧基-4′-丙炔氧基偶氮苯;采用单电子转移引发产生自由基,以可逆加成断裂链转移的方式进行链增长的方法进行单体的聚合反应,同时进行点击化学反应,一价铜催化叠氮基团和偶合组分中的炔基进行环加成反应,得到侧链功能化的聚合物。由于本发明结合SET-RAFT方法和点击化学的方法只需要一步反应便能得到侧链功能化的聚合物,因此减少了反应步骤,降低了原料的浪费率,实现了资源的合理利用,并且基本上没有副反应的发生,不用进行麻烦的提纯操作。
-
公开(公告)号:CN101891843B
公开(公告)日:2012-01-25
申请号:CN201010223709.X
申请日:2010-07-09
Applicant: 苏州大学
IPC: C08F2/38 , C08F118/08
Abstract: 本发明属于高分子材料领域,具体涉及一种制备结构可控的超支化聚醋酸乙烯酯聚合物的方法以醋酸乙烯酯为单体,偶氮二异丁腈为引发剂,与RAFT试剂构成可逆加成断裂链转移聚合(RAFT)体系,以1,4-二氧六环为溶剂,在惰性气氛中,制备超支化聚醋酸乙烯酯;其特征在于,其中所述RAFT试剂为(2-乙氧基二硫代酸酯基)醋酸乙烯酯(ECTVA)。本发明利用ECTVA调控VAc单体的聚合,通过SCVP与RAFT技术相结合,首次成功实现了结构可控的超支化PVAc聚合物的合成;所得超支化PVAc聚合物具有比直链聚合物更好的分散纳米金的能力。
-
公开(公告)号:CN102321198A
公开(公告)日:2012-01-18
申请号:CN201110177187.9
申请日:2011-06-28
Applicant: 苏州大学
IPC: C08F2/38 , C08F2/02 , C08F2/04 , C08F112/08
Abstract: 本发明公开了一种制备双峰分布聚合物的方法,包括以下步骤:配制聚合体系,在50~90℃下进行RAFT聚合反应至少1个小时,分离提纯,获得双峰分布聚合物;所述聚合体系包括单体、自由基引发剂、单头RAFT试剂、双头RAFT试剂。其中,所述可自由基聚合的单体选自:苯乙烯、丙烯酸酯类、水溶性的N-异丙基丙烯酰胺等中的一种;所述常规自由基引发剂选自:偶氮二异丁腈、过氧化二苯甲酰中的一种;所述单、双官能团RAFT试剂组合选自:二硫代氨基甲酸酯和三硫代碳酸酯类类中的一种。由于本发明使用的RAFT法具有“活性”/可控聚合的特征,可以合成分子量及分子量分布可控的双峰分布聚合物。
-
公开(公告)号:CN101735362B
公开(公告)日:2011-08-31
申请号:CN200910264671.8
申请日:2009-12-22
Applicant: 苏州大学
IPC: C08F120/44 , C08F2/06 , C08F4/50
Abstract: 本发明公开了一种室温下活性聚合制备聚丙烯腈的方法,以丙烯腈为单体,以乙基-2-溴异丁酸酯为引发剂,以铜粉为催化剂,以2,2’-联吡啶为配体,以二甲亚砜为溶剂,在惰性气体气氛中,在室温下15-35℃进行单电子转移活性自由基聚合,制备聚丙烯腈;其中,按照体积比,单体丙烯腈∶溶剂二甲亚砜≤1∶1;按照摩尔比,催化剂铜粉∶配体2,2’-联吡啶>0.5∶3。由于本发明应用单电子转移“活性”自由基聚合方法,首次成功地在室温环境中制备得到聚丙烯腈,聚合速率较快,转化率高,所得聚丙烯腈的分子量高,同时分子量分布窄。
-
-
-
-
-
-
-
-
-