-
公开(公告)号:CN113343762B
公开(公告)日:2022-03-29
申请号:CN202110497324.0
申请日:2021-05-07
Applicant: 北京邮电大学
Abstract: 本发明提供一种人体姿态估计分组模型训练方法、姿态估计方法及装置,基于多路径结构分别以不同扩张速率进行空洞卷积,并同时进行变形卷积,能够更好地适应多人姿态识别场景下不同尺寸和形状人体对象的特征提取需求。基于长程偏移量图和局部中心偏移量图计算各候选关节点到各真实人体对象中心点的精细偏移量,在非极大值抑制操作的基础上,将精细偏移量相差倍数在设定数值以内的候选关节点划分至同一人体对象分组,能够在多人姿态识别场景中保证各关节点分组正确率的前提下,降低计算复杂度,极大节约算力,提高识别效率。
-
公开(公告)号:CN112464847B
公开(公告)日:2021-08-31
申请号:CN202011415844.4
申请日:2020-12-07
Applicant: 北京邮电大学
IPC: G06K9/00
Abstract: 本发明提供一种视频中人体动作切分方法及装置,所述方法使用人体姿态估计算法提取人体骨骼关键点信息以反映人体结构特征,通过滑窗提取多个候选序列,并利用人体骨骼关键点信息基于动态时间规划算法分析各候选序列与标准序列的相似性,最终得到与标准序列最接近的候选序列,并完成对视频的切分。基于人体结构特征进行分析,能够极大提高视频切分的准确度,并简化运算复杂度。通过滑窗提取候选序列并使用动态时间规划算法进行分析,保留了完整的帧间关系信息,提高了切分准确度。
-
公开(公告)号:CN112464847A
公开(公告)日:2021-03-09
申请号:CN202011415844.4
申请日:2020-12-07
Applicant: 北京邮电大学
IPC: G06K9/00
Abstract: 本发明提供一种视频中人体动作切分方法及装置,所述方法使用人体姿态估计算法提取人体骨骼关键点信息以反映人体结构特征,通过滑窗提取多个候选序列,并利用人体骨骼关键点信息基于动态时间规划算法分析各候选序列与标准序列的相似性,最终得到与标准序列最接近的候选序列,并完成对视频的切分。基于人体结构特征进行分析,能够极大提高视频切分的准确度,并简化运算复杂度。通过滑窗提取候选序列并使用动态时间规划算法进行分析,保留了完整的帧间关系信息,提高了切分准确度。
-
-