基于多层次特征提取和上下文模型的目标检测

    公开(公告)号:CN105740891B

    公开(公告)日:2019-10-08

    申请号:CN201610056601.3

    申请日:2016-01-27

    Inventor: 刘波 马增妍

    Abstract: 基于多层次特征提取和上下文模型的目标检测,本发明所构造的模型主要是统计了真实图片中图像之间的空间位置关系,从而可以提高目标检测的正确率。无论图像是同类别还是不同类,都会有一些特定的空间位置关系。首先对一副图片进行选择搜索,产生大量region proposals,然后对每一幅图片的所有region proposals进行特征提取,采用的是7层的卷积神经网络,最后用支持向量机进行分类。本发明给出一种新的找到最佳物体检测位置的方法。主要解决的技术问题是提供一种新的上下文模型,代替原有的非极大值抑制方法,用来获得更好的目标检测正确率。

    一种基于三维卷积和Faster RCNN的视频动作检测方法

    公开(公告)号:CN108399380A

    公开(公告)日:2018-08-14

    申请号:CN201810144476.0

    申请日:2018-02-12

    Inventor: 刘波 聂相琴

    Abstract: 本发明公开一种基于三维卷积和Faster RCNN的视频动作检测方法,首先引入一个新的模型,其使用三维完全卷积网络对视频流进行编码;随后在生成的特征基础上生成包含动作的候选时间区域,并生成一组候选框;最后不同剪辑的候选框经过分类检测,将视频流中动作类别、视频动作开始和结束时间预测出来;同时预测出动作的空间位置边界框。与现有方法相比,本发明所述方法在未修剪的数据集视频时序动作检测上具有优异的性能,同时可以在缺乏空间标注信息的情况下实现动作定位。

    一种基于卷积神经网络和双目视差的无监督深度预测方法

    公开(公告)号:CN108389226A

    公开(公告)日:2018-08-10

    申请号:CN201810144465.2

    申请日:2018-02-12

    Inventor: 刘波 杨青相

    Abstract: 本发明公开一种基于卷积神经网络和双目视差的无监督深度预测方法,包括以下步骤:首先,使用卷积神经网络拟合一个非线性函数,将两幅RGB图像转换为对应的深度图像;然后,利用深度信息计算从左图像像素坐标经过变换得到在右图像的像素位置;在得到右图像的像素位置后经过双线性插值得到右图像的像素坐标和对应的像素值;最后利用求得像素值和左图像对应的像素值计算预测损失。通过这种不需要任何真实深度信息的训练可以得到相应的深度图像。该方法在不需要任何真实深度信息预测相应的深度图像。

    一种用线性判别函数设计凸可分分类器的方法

    公开(公告)号:CN101655926B

    公开(公告)日:2011-11-16

    申请号:CN200910092168.9

    申请日:2009-09-01

    Abstract: 本发明公开了一种用线性判别函数设计凸可分分类器的方法,依次包括以下步骤:输入两类数据向量样本集合X和Y;计算X中的每个点到Y的凸包的最近点,Y中的每个点到X的凸包的最近点,X关于Y的凸距离,Y关于X的凸距离,X和Y的凸距离以及X和Y的最佳凸可分方向;在区间(0,1]中选择参数γ,并根据X和Y的最佳凸可分方向,构造一组线性判别函数设计X和Y的凸可分分类器;本发明在解决凸可分分类问题时,不需要选择核函数,也不需要求解二次规划问题,编程实现容易,运行效率较高,泛化能力较强,而且能够明确判定两类数据向量样本集合是凸可分。

Patent Agency Ranking