-
公开(公告)号:CN116626552A
公开(公告)日:2023-08-22
申请号:CN202310577333.X
申请日:2023-05-22
IPC: G01R33/00 , G01R33/07 , G01R33/09 , G01R33/035
Abstract: 本发明公开了一种真空光阱中测量光轴上微弱磁场的装置和方法。真空腔内放置有高聚焦透镜、纳米介质球和磁场传感器,磁场传感器设置在光轴上,光束入射至真空腔内经高聚焦透镜的会聚后形成光阱,纳米介质球上负载有电子,纳米介质球被激光光束在光阱中捕获。在高真空环境下,由光源发出的平面涡旋激光,经高聚焦透镜在光阱中形成高梯度力捕获场,纳米介质球被高梯度力光场捕获并旋转。其电子通过旋转形成载流线圈,在真空光阱中产生磁场,通过磁场传感器和计算机记录采集到的真空光阱光轴上的磁场。本发明直接测量真空光阱中光轴上的磁场,无机械部件的摩擦,直接消除环境磁场因素对磁场探测造成的干扰误差,可实现磁场测量的高精度,高灵敏度。
-
公开(公告)号:CN116380727A
公开(公告)日:2023-07-04
申请号:CN202310332023.1
申请日:2023-03-30
IPC: G01N15/00
Abstract: 本申请涉及一种应用于真空光镊的探测装置和方法。装置包括:光束发生模块、光束处理模块以及信号处理模块,光束处理模块分别与光束发生模块以及信号处理模块连接;光束发生模块,用于生成参考光束和信号光束,参考光束和信号光束由同一原始光束分光得到;光束处理模块,用于基于参考光束生成第一信号,基于信号光束生成第二信号,将第一信号和第二信号发送至信号处理模块;信号处理模块,用于基于第一信号对应的参考光电流消除第二信号对应的信号光电流中的直流干扰量,得到目标探测信号。采用本方法能够随光源光功率变化自适应抵消探测信号中的直流干扰量,从而优化探测装置的噪声性能。
-
公开(公告)号:CN116007737A
公开(公告)日:2023-04-25
申请号:CN202211572087.0
申请日:2022-12-08
IPC: G01H9/00
Abstract: 本发明公开了一种基于光力效应的声传感器,包括:声传感模块,球形微粒被激光捕获于配重外壳内腔中心附近,配重外壳与所处声场介质同振,微粒与外壳相对运动;捕获光路模块,激光器发出的光束通过耦合光纤形成相向传播且精确对准的高斯光束,将球形微粒稳定捕获于内腔中央;位置检测模块,小球散射光通过接收光纤起到微粒位置实时精确检测的作用,通过微粒相对外壳的位移信息可得到外壳的振动信息,进而得到所处声场的矢量信息。本发明提出的基于光力效应的单个声传感器便可同步获得声场完整的标量和矢量信息,理论计算对应声传感器等效自噪声压远低于环境噪声谱级,在低噪声声场测量领域具有重要意义。
-
公开(公告)号:CN114826851A
公开(公告)日:2022-07-29
申请号:CN202210732153.X
申请日:2022-06-27
Abstract: 本发明公开了一种基于悬浮微粒的信号通讯方法和装置。方法步骤如下:1)制备微粒悬浮状态;2)调控与测量悬浮微粒带电量;3)校准悬浮微粒电磁响应特性;4)施加电磁通讯信号;5)获取与解调电磁通讯信号。装置,包括悬浮捕获模块、电荷测控模块、电磁响应校准模块和通讯信号探测与解调模块;电磁响应校准模块用于提前获取悬浮微粒的必要先验信息,测量悬浮微粒的基底噪声和频域的电磁响应传递函数;通讯信号探测与解调模块用于恢复外部的电磁响应信号,并解调出信号的码元信息。针对现有的无线通讯系统所用的天线体积庞大、接收灵敏度偏低的问题,本发明至少具备两个方面的优势:一是悬浮微粒的体积更小,二是系统具有更高的接收灵敏度。
-
公开(公告)号:CN111816343B
公开(公告)日:2022-07-19
申请号:CN202010625873.7
申请日:2020-07-01
IPC: G21K1/00
Abstract: 本发明公开了一种利用正弦相位调制实现多位置光阱的装置。激光器发出激光束经扩束后反射到液晶型空间光调制器上,通过图形控制器的正弦相位调制加载到液晶型空间光调制器,液晶型空间光调制器对光束进行正弦相位调制处理得到调制后的正弦高斯光束并出射分为两路,一路依次经过反射镜输入第一高聚焦物镜入射到样品台;另一路经反射后输入第二高聚焦物镜聚焦后入射样品台,样品台上置有多个微粒,样品台附近设有探测器,探测器与计算机相连。本发明能够实现多位置的高精度、无损伤的光学捕获和远场操纵,能同时对多个位置的微粒进行捕获和控制,解决了传统光镊无法独立捕获多微粒的难题。
-
公开(公告)号:CN114646813A
公开(公告)日:2022-06-21
申请号:CN202210517981.1
申请日:2022-05-13
Abstract: 本发明公开一种光电二极管结电容测量装置及方法,包括待测光电二极管、可调偏置电压模块、跨阻放大模块、锁相放大器以及上位机模块。避光条件下,待测光电二极管一端与可调偏置电压模块相连,一端与跨阻放大模块的反相输入端相连,锁相放大器输出扫频信号接入跨阻放大模块的正相输入端作为激励信号,并采集跨阻放大模块的输出信号上传给上位机,上位机根据系统响应函数拟合出待测光电二极管的结电容。本发明可以间接测量出不同偏置电压下的光电二极管结电容,拟合均方误差仅为10‑4量级,具有测量步骤简单,精度高的优点,适用于光电二极管挑选、提高参数一致性等应用,能够提升平衡探测器的共模抑制比。
-
公开(公告)号:CN111290041B
公开(公告)日:2022-06-21
申请号:CN202010197933.X
申请日:2020-03-19
IPC: G01V8/10
Abstract: 本发明公开了一种利用电光调制器比例补偿抑制光源强度噪声的方法和装置。利用光分束器件将光源输出按比例分束,形成一对高功率和低功率光束,对高功率光束进行采样,获取光强波动信息,通过信号处理模块将调制信号加载至电光调制器,以调制低功率光束的光强波动,以产生与高功率光束强度相同、相位差为180度的光信号,最后与高功率光束合束输出,从而达到抑制输出光光强波动的效果。本发明克服了电光调制器功率阈值低的缺点,实现了大功率激光器在强度噪声抑制,成本低,易于应用实施。
-
公开(公告)号:CN114189172B
公开(公告)日:2022-05-24
申请号:CN202210137538.1
申请日:2022-02-15
IPC: H02N1/00
Abstract: 本发明公开了一种精准调控微粒净电量的方法及装置。所述的方法,步骤如下:1)悬浮待调节微粒;2)在待调节微粒周围产生自由电荷;3)在待调节微粒周围产生加速电场,定向地控制自由电荷的移动;3.1)电荷正负性的调控:通过调节加速电场的方向,调控吸附至待调节微粒的自由电荷的正负性;3.2)电荷量的调控:通过设置电荷屏蔽罩,控制吸附到待调节微粒上的自由电荷的数量。所述的装置,包括电荷屏蔽罩、针尖电极、平板电极、支撑结构。本发明可精确地调控微粒携带的电荷量及其正负性,为在微纳尺度控制微粒的运动、提升真空光镊系统的力学灵敏度提供可能的解决方案。另外,可应用在静电除尘、静电复印、静电透镜等领域。
-
公开(公告)号:CN114189172A
公开(公告)日:2022-03-15
申请号:CN202210137538.1
申请日:2022-02-15
IPC: H02N1/00
Abstract: 本发明公开了一种精准调控微粒净电量的方法及装置。所述的方法,步骤如下:1)悬浮待调节微粒;2)在待调节微粒周围产生自由电荷;3)在待调节微粒周围产生加速电场,定向地控制自由电荷的移动;3.1)电荷正负性的调控:通过调节加速电场的方向,调控吸附至待调节微粒的自由电荷的正负性;3.2)电荷量的调控:通过设置电荷屏蔽罩,控制吸附到待调节微粒上的自由电荷的数量。所述的装置,包括电荷屏蔽罩、针尖电极、平板电极、支撑结构。本发明可精确地调控微粒携带的电荷量及其正负性,为在微纳尺度控制微粒的运动、提升真空光镊系统的力学灵敏度提供可能的解决方案。另外,可应用在静电除尘、静电复印、静电透镜等领域。
-
公开(公告)号:CN114049980A
公开(公告)日:2022-02-15
申请号:CN202111098886.4
申请日:2021-09-18
IPC: G21K1/00
Abstract: 本发明公开了一种真空光镊中的新型微球起支系统和方法。真空腔内固定有柱状的包裹物质,包裹物质内均匀间隔固定包裹有多个微球,真空腔的腔壁上开设有透光光学窗口,真空腔外的起支激光透过透光光学窗口照射到包裹物质的末端,使得包裹物质吸热分解,释放出一个或多个微球。本发明利用包裹物质易分解的性质,通过起支激光对包裹物质加热分解释放微球,减小了对微球尺寸的限制;由于起支激光从真空腔外发出,避免了额外的连接,提高了环境的封闭性,减少了外界环境输入的干扰,有利于精密测量;本发明能较为精确地控制每次起支释放的微球数量,减少多余微球对真空腔的污染,增加起支次数,提高光镊捕获单个微球的成功率。
-
-
-
-
-
-
-
-
-