-
公开(公告)号:CN114417427A
公开(公告)日:2022-04-29
申请号:CN202210320910.2
申请日:2022-03-30
Applicant: 浙江大学
Abstract: 本发明公开了一种面向深度学习的数据敏感属性脱敏系统及方法,系统包括特征提取器和隐私对抗训练模块;特征提取器的输入端连接训练数据集,输出端连有隐私对抗训练模块;特征提取器由卷积神经网络组成,是训练的核心模块,由数据中心训练,训练完成后分发给个人用户用于后续的本地端数据预处理;隐私对抗训练模块包含代理攻击分类器。本方案提出隐私对抗训练在特征空间中将隐私属性置于决策超平面,使得攻击者无法推断,提出条件重构模块保障除隐私属性以外的其他信息被保留下来,能够有效应用于下游任务,同时提出联合优化策略,对数据隐私和数据可用性进行权衡,使得二者能够同时达到最优效果。