-
公开(公告)号:CN118503152B
公开(公告)日:2024-10-18
申请号:CN202410953981.5
申请日:2024-07-17
Applicant: 齐鲁工业大学(山东省科学院) , 山东省计算中心(国家超级计算济南中心) , 山东省公安厅
IPC: G06F12/10 , G06N3/0442 , G06N3/045 , G06N3/08
Abstract: 本发明涉及计算机缓存技术领域,提供了一种基于门控循环与多头注意力机制的缓存替换方法及系统。该方法包括,将获取的当前访问的缓存行地址和程序计数器,转换为嵌入向量;基于嵌入向量以及前一时间步的隐藏状态,采用门控循环单元,得到当前时间步的隐藏状态,作为下一时间步门控循环单元的输入之一;将拼接的若干时间步的隐藏状态和缓存行地址输入多头注意力机制,得到上下文向量;将上下文向量输入全连接层,输出每个缓存行被替换的概率。本发明将机器学习应用于缓存优化,以满足不断变化的数据处理需求,提高缓存系统的性能和智能程度,更好地应对日益复杂和多边的数据需求,实现更高效的缓存系统。
-
公开(公告)号:CN118503152A
公开(公告)日:2024-08-16
申请号:CN202410953981.5
申请日:2024-07-17
Applicant: 齐鲁工业大学(山东省科学院) , 山东省计算中心(国家超级计算济南中心) , 山东省公安厅
IPC: G06F12/10 , G06N3/0442 , G06N3/045 , G06N3/08
Abstract: 本发明涉及计算机缓存技术领域,提供了一种基于门控循环与多头注意力机制的缓存替换方法及系统。该方法包括,将获取的当前访问的缓存行地址和程序计数器,转换为嵌入向量;基于嵌入向量以及前一时间步的隐藏状态,采用门控循环单元,得到当前时间步的隐藏状态,作为下一时间步门控循环单元的输入之一;将拼接的若干时间步的隐藏状态和缓存行地址输入多头注意力机制,得到上下文向量;将上下文向量输入全连接层,输出每个缓存行被替换的概率。本发明将机器学习应用于缓存优化,以满足不断变化的数据处理需求,提高缓存系统的性能和智能程度,更好地应对日益复杂和多边的数据需求,实现更高效的缓存系统。
-
公开(公告)号:CN118211268A
公开(公告)日:2024-06-18
申请号:CN202410428512.1
申请日:2024-04-10
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06F21/62 , G06V10/30 , G06V10/774 , G06V10/764 , G06V10/82 , G06N3/0464 , G06N3/098
Abstract: 本公开提供了基于扩散模型的异构联邦学习隐私保护方法及系统,涉及联邦学习隐私保护技术领域,包括建立服务器端与客户端的通信通道;获取客户端类别分布不均匀的数据上传至服务端,将所述类别分布不均匀的数据作为去噪扩散模型的输入,在服务器端生成符合数据分布的图像;利用生成的图像数据进行异构联邦学习的训练,服务器端初始化全局模型参数,并分发给随机选择的客户端,利用知识蒸馏方法,将全局模型看作教师网络,把上一轮的本地模型看作学生网络,进行本地模型的训练和参数上传,服务端利用各个客户端的上传的本地模型参数进行全局模型聚合,完成知识迁移。
-
公开(公告)号:CN117496434A
公开(公告)日:2024-02-02
申请号:CN202311478776.X
申请日:2023-11-08
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06V20/52 , G06V40/20 , G06V10/44 , G06V10/25 , G06V10/80 , G06V10/26 , G06N3/045 , G06N3/0464 , G06N3/048 , G06N3/082
Abstract: 本发明涉及一种基于改进YOLOv5算法的学生行为检测方法及系统,包括:获取待检测的教室的图片并进行预处理;将预处理后的图片输入训练好的改进的YOLOv5网络模型中进行学生行为检测,得到学生行为检测结果;改进的YOLOv5包括骨干网络bockbone、neck层和Head层,骨干网络bockbone包括Conv模块、C3模块、SACA模块以及BasciRFB模块。本发明将SPP模块替换为BasicRFB模块,同时搭建SACA模块,先经过SACA模块获取通道相关性权重特征以及空间信息权重特征,可以更好的获取有效特征信息,再经过BasicRFB模块进行特征提取,可以对目标模型特征达到更好的识别效果。
-
公开(公告)号:CN117312989A
公开(公告)日:2023-12-29
申请号:CN202311380815.2
申请日:2023-10-24
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06F18/2415 , G06F40/30 , G06N3/042 , G06N3/0464 , G06N3/0455
Abstract: 本发明涉及一种基于GCN和RoBERTa的上下文感知的列语义识别方法和系统,包括:数据预处理:设置增量同步数据获取任务,进行数据采集和清洗,加载到Mysql环境当中;列语义识别:基于数据集的列关系属性及属性关系构建词汇关系图,作为双层GCN图卷积网络输入来获取GCN全局语义特征嵌入;通过RoBERTa预训练模型线性化编码,将初步列向量输入到三层Tansformer使用其多头列注意力机制来获取局部语义特征嵌入,将并联输出的嵌入向量通过注意力机制融合权值,得到全局‑局部交互的上下文语义信息,并使用Adaline进行分类预测;本发明构建了上下文列语义识别模型,基于关系列投影进行元数据的语义识别。
-
公开(公告)号:CN117112667A
公开(公告)日:2023-11-24
申请号:CN202311071030.7
申请日:2023-08-24
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06F16/25 , G06F16/21 , G06F16/215
Abstract: 本发明涉及一种基于湖仓一体的高校关系数据处理方法和系统,包括:将高校各业务系统原始数据抽取入湖仓及分割初始元数据入仓,并将有标签的元数据存入湖仓;构建初版高校数据标准映射字典,并将其数据标准中的中文简称同化成模型语义类别标签;对抽取入湖仓的未含有标注的元数据进行语义识别,基于模型语义类别标签对元数据标注进行纠错,并更新回填至湖仓的元数据标注中;基于数据仓库中的高校元数据标准映射字典,映射整合并构建分级分类的高校数据资产目录;实现数据资产目录发布及查询搜索。本发明构建了统一的高校元数据标准映射数据字典,实现业务系统与实现不同业务系统与高校统一元数据标准之间的关联映射,构建统一的数据资产目录。
-
公开(公告)号:CN117112648A
公开(公告)日:2023-11-24
申请号:CN202311070405.8
申请日:2023-08-24
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06F16/2458 , G06F16/215 , G06F18/214 , G06F18/24 , G06F18/23213 , G06Q50/20
Abstract: 本发明涉及一种基于智慧教育数据的高校学生学习画像生成系统及方法,属于数据挖掘领域,包括数据抽取模块、数据处理模块、标签模块、数据库模块、画像生成模块;通过针对学生在教育大数据应用中的现实需要,聚焦于学生学习行为,针对多任务学习场景,分析学生学习特征,构造客观的学生画像标签体系,设计学生画像标签体系技术架构,对学生群体进行深度刻画,构建学生学习画像,以此形成的学生画像来反映学生表现特征,提供个性化教学,降低大量数据给师生带来的认知负荷,为学生教育管理者提供相应的决策支持。
-
公开(公告)号:CN116860995A
公开(公告)日:2023-10-10
申请号:CN202310816845.7
申请日:2023-07-05
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
Abstract: 本发明涉及一种应用于多元编程习题的深度知识追踪方法及系统,包括:接收编程平台系统的用户做题数据和编译日志数据,进行数据预处理;对错误信息进行日志模式聚类;构建题型特征矩阵;基于时间间隔和学习能力的位置编码;对答题交互序列进行one‑hot编码转化,得到答题交互嵌入向量;将答题交互嵌入向量输入至训练好的深度知识追踪模型中实现深度知识追踪。本发明通过对数据处理、建立知识库和模型改进,使模型可以适用于多元题型,更加符合实际场景的应用,尤其是通过建立编译结果知识库,实现了知识追踪在编程平台领域的针对多种不同习题题型的应用。
-
公开(公告)号:CN116527274A
公开(公告)日:2023-08-01
申请号:CN202310534559.1
申请日:2023-05-10
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: H04L9/32
Abstract: 本发明涉及数字签名技术领域,公开了基于多标量乘快速计算的椭圆曲线验签方法及系统;其中方法包括:椭圆曲线数字签名步骤和椭圆曲线签名验签步骤;椭圆曲线数字签名步骤和椭圆曲线签名验签步骤中的多标量乘计算过程包括:获取椭圆曲线上基点P、点Q以及基点P的三倍点仿射坐标3P,对获取的数据进行预计算处理得到参数表;对标量系数K和标量系数L进行处理得到系数表;对参数表和系数表进行逐位计算,对逐位计算结果进行坐标还原处理得到多标量乘结果。通过对数字签名算法中遇到的多标量乘运算进行优化,大大降低了数字签名和数字验签过程的时间复杂度,提升数字签名的运算速度,提升系统的整体性能,提升用户体验。
-
公开(公告)号:CN115037749B
公开(公告)日:2023-07-28
申请号:CN202210644605.9
申请日:2022-06-08
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学
IPC: H04L67/10 , H04L67/1074 , H04L67/133 , H04L67/63
Abstract: 本发明涉及一种大规模微服务智能多资源协同调度方法及系统,包括:采集微服务资源使用信息与微服务运行时信息并进行数据预处理;对资源协同调度进行决策的性能感知的多层联动;对微服务进行资源调度的资源分配。通过自动的信息采集可以实时地感知微服务的资源使用和延迟性能等情况;在此基础上,利用多智能体深度强化学习方法可以捕获各个微服务之间的依赖关系,并根据工作负载的动态变化协同地对每个微服务所使用的多种资源进行弹性细粒度的调整。本发明可以在尽可能保障大规模微服务应用的尾延迟SLO的同时,降低微服务每个资源维度的资源冗余,进而提高整体资源利用率。
-
-
-
-
-
-
-
-
-