-
公开(公告)号:CN117350171A
公开(公告)日:2024-01-05
申请号:CN202311638586.X
申请日:2023-12-04
Applicant: 山东省计算中心(国家超级计算济南中心)
IPC: G06F30/27 , G06N3/0464 , G06N3/0455 , G06F119/08
Abstract: 本发明提出了基于双流模型的中尺度涡三维次表层结构反演方法及系统,涉及深度学习与海洋反演交叉领域,通过卫星采集待反演的中尺度涡海表面信息;将中尺度涡海表面信息输入到训练好的双流模型中,反演出中尺度涡不同深度下的温度结果,得到中尺度涡次表层温度剖图;其中,所述双流模型引入Triplet attention注意力机制,采用三分支结构融合通道注意力和空间注意力进行跨维度交互;本发明采用双流模型实现中尺度涡次表层结构反演,发掘海表面参数间的数据关联,分别建立不同参数与次表层温度的关系模型,融合多源信息特征关系,实现特征融合,有效融合了多源数据,提升了反演效果。
-
公开(公告)号:CN115908772A
公开(公告)日:2023-04-04
申请号:CN202211475396.6
申请日:2022-11-23
Applicant: 山东省计算中心(国家超级计算济南中心)
IPC: G06V10/20 , G06V10/42 , G06V10/44 , G06V10/774 , G06V10/80 , G06V10/82 , G06N3/0464 , G06N3/048 , G06N3/08
Abstract: 本发明提出了一种基于Transformer和融合注意力机制的目标检测方法,包括:获取待检测图像进行预处理;将预处理后的待检测图像输入至训练好的目标检测模型中,输出检测结果;其中,所述目标检测模型包括Swin Transformer模块、注意力融合模块和检测模块,所述Swin Transformer模块用于提取待检测图像的全局特征,所述注意力融合模块用于局部特征提取,并将全局特征和局部特征采用跨层级联的方式进行融合,所述检测模块用于根据融合后的特征输出检测结果。融合局部感受野与Transformer的全局信息,以进一步提升局部特征与全局信息融合的能力,增强低信噪比目标的检测效果。
-
公开(公告)号:CN115879569A
公开(公告)日:2023-03-31
申请号:CN202310214205.9
申请日:2023-03-08
Applicant: 齐鲁工业大学(山东省科学院) , 山东省计算中心(国家超级计算济南中心)
IPC: G06N20/00 , G06F18/25 , G16Y40/10 , G06N3/0455 , G06N3/084
Abstract: 本发明提出了一种IoT观测数据的在线学习方法及系统,涉及数据处理技术领域,根据获取的初始时序观测数据,初始化在线深度学习模型;实时获取传感器生成的时序观测数据,根据时序观测数据形成输入数据流;在线深度学习模型处理输入数据流,生成最终预测结果;在处理输入数据流的过程中,对输入数据流进行即时学习,实时动态更新在线深度学习模型;即时学习,是基于数据流的均值和方差,学习数据分布,构造准正态分布,重构新的样本,实现变分注意力网络,基于分布差异、重构差异和推理差异,进行模型的动态调整;本发明学习不同隐藏层之间的隐藏信息,提高模型推理的准确性,同时通过在线学习,对不同隐藏层间的参数进行动态调整。
-
公开(公告)号:CN111000553B
公开(公告)日:2022-09-27
申请号:CN201911395467.X
申请日:2019-12-30
Applicant: 山东省计算中心(国家超级计算济南中心)
IPC: A61B5/346
Abstract: 本发明的基于投票集成学习的心电数据智能分类方法,其特征在于,通过以下步骤来实现:a).数据预处理;b).建立logistic回归模型;c).建立决策树模型;d).建立一个支持向量机;e).建立朴素贝叶斯模型;f).建立神经元模型;g).建立k邻近模型;h).模型集成,最终获得一个正确率不低于80%的模型,效果优于步骤b)至步骤g)中建立的单个模型。本发明的心电数据智能分类方法,首先从ccdd中获取足够数量的数据,将其分为训练集和测试集,然后建立各类模型,最后,获得一个正确率不低于80%的模型,可实现对“正常、房颤、房性早搏、偶发房性早搏、频发房性早搏、房性心动过速、房颤伴快速心室率”进行智能识别分类,实现心血管疾病的早发现、早治疗。
-
公开(公告)号:CN114385619B
公开(公告)日:2022-07-15
申请号:CN202210285171.8
申请日:2022-03-23
Applicant: 山东省计算中心(国家超级计算济南中心)
IPC: G06F16/215 , G06F16/2458 , G06N3/04
Abstract: 本发明属于基于特定计算模型的计算机系统领域,提供了一种多通道海洋观测时序标量数据缺失值预测方法及系统,获取带有海洋缺失值的海洋观测时序标量数据;基于所述海洋观测时序标量数据,采用TA‑RNN模型,得到海洋缺失值预测结果;所述TA‑RNN模型包括卷积注意模块、空间注意模块和时间注意模块,所述卷积注意模块用于将所述海洋观测时序标量数据进行细化;所述空间注意模块用于捕获细化后的所述海洋观测时序标量数据的动态空间相关性;所述时间注意模块用于捕获空间注意模块输出数据中不同时间间隔之间的动态时间相关性。
-
公开(公告)号:CN112685950B
公开(公告)日:2022-05-20
申请号:CN202011391590.7
申请日:2020-12-02
Applicant: 山东省计算中心(国家超级计算济南中心)
IPC: G06F30/27 , G06F119/02
Abstract: 本发明公开了海洋时序观测数据的异常检测方法、系统和设备,海洋时序观测数据的异常检测方法,包括以下步骤:采集海洋观测数据并进行预处理;计算CoDisp值;基于预测数据点序列得到的t时刻的海洋观测数据的预测值;将预测值与t时刻实际测量得到的目标数据点x值相减并计算绝对值,获得PredDiff值;对预设时长内CoDisp值和PredDiff值分别统计建模,获取CoDisp值、PredDiff值的概率分布,并基于得到的概率分布,计算检测窗口内各目标数据点的异常概率。基于滑窗的动态异常概率确定方法能解决人工设定的阈值缺乏科学依据的问题,在实际应用时发挥异常检测作用。
-
-
-
-
-