一种基于投票集成学习的心电数据智能分类方法

    公开(公告)号:CN111000553B

    公开(公告)日:2022-09-27

    申请号:CN201911395467.X

    申请日:2019-12-30

    Abstract: 本发明的基于投票集成学习的心电数据智能分类方法,其特征在于,通过以下步骤来实现:a).数据预处理;b).建立logistic回归模型;c).建立决策树模型;d).建立一个支持向量机;e).建立朴素贝叶斯模型;f).建立神经元模型;g).建立k邻近模型;h).模型集成,最终获得一个正确率不低于80%的模型,效果优于步骤b)至步骤g)中建立的单个模型。本发明的心电数据智能分类方法,首先从ccdd中获取足够数量的数据,将其分为训练集和测试集,然后建立各类模型,最后,获得一个正确率不低于80%的模型,可实现对“正常、房颤、房性早搏、偶发房性早搏、频发房性早搏、房性心动过速、房颤伴快速心室率”进行智能识别分类,实现心血管疾病的早发现、早治疗。

    一种海洋时序观测数据的异常检测方法、系统和设备

    公开(公告)号:CN112685950B

    公开(公告)日:2022-05-20

    申请号:CN202011391590.7

    申请日:2020-12-02

    Abstract: 本发明公开了海洋时序观测数据的异常检测方法、系统和设备,海洋时序观测数据的异常检测方法,包括以下步骤:采集海洋观测数据并进行预处理;计算CoDisp值;基于预测数据点序列得到的t时刻的海洋观测数据的预测值;将预测值与t时刻实际测量得到的目标数据点x值相减并计算绝对值,获得PredDiff值;对预设时长内CoDisp值和PredDiff值分别统计建模,获取CoDisp值、PredDiff值的概率分布,并基于得到的概率分布,计算检测窗口内各目标数据点的异常概率。基于滑窗的动态异常概率确定方法能解决人工设定的阈值缺乏科学依据的问题,在实际应用时发挥异常检测作用。

Patent Agency Ranking