一种基于知识蒸馏的轻量级苹果叶片病害识别方法

    公开(公告)号:CN113610163A

    公开(公告)日:2021-11-05

    申请号:CN202110908681.1

    申请日:2021-08-09

    Abstract: 本发明公开了一种基于知识蒸馏的轻量级苹果叶片病害识别方法,属于图像处理技术领域,包括:数据集处理;改进经典SqueezeNet结构;教师网络指导;低精度教师网络进修;苹果叶片病害识别。本发明所采用的主干网络是一种轻量且高效的卷积神经网络模型,并对其结构进行设计和修改,获取更加轻量化的模型;同时利用知识蒸馏方法在显著减少模型参数同时使模型性能保持在较高的水平,将更加有利于模型部署在移动终端等嵌入式资源有限的设备上,有助于实现对苹果叶片病害的实时准确识别;还提出一种“进修”思想,可以有效解决教师网络指导效果差的问题。

    一种基于多元线性回归算法预测炼铁高炉炉芯死料柱温度的方法

    公开(公告)号:CN109280726B

    公开(公告)日:2021-08-27

    申请号:CN201811086634.8

    申请日:2018-09-18

    Abstract: 本发明公开了一种基于多元线性回归算法预测炼铁高炉炉芯死料柱温度的方法,属于冶金信息处理技术领域。本发明首先进行炉芯死料柱温度目标值DMTgoal的计算,接着对该数据进行处理,对经过处理得到的数据样本做Pearson相关性分析,根据相关性分析的结果初步选取条件变量。再对各条件变量进行Pearson相关性分析,依据相关性分析的结果尽可能选择互相独立的条件变量建立模型。接着通过最小二乘法以及基于AIC的变量筛选准则筛选条件变量,再检验初步多元线性回归方程的拟优合度与回归系数,得到多元线性回归模型。本发明第一次提出使用多元线性回归算法来预测炉芯死料柱温度,可以实现高精度预测未来五天内的炉芯死料柱温度,而且可以实现炉芯死料柱温度的预警功能。

    一种基于机器学习算法的树叶病害识别方法

    公开(公告)号:CN109308697A

    公开(公告)日:2019-02-05

    申请号:CN201811087765.8

    申请日:2018-09-18

    Abstract: 本发明公开了一种基于机器学习算法的树叶病害识别方法,属于图像处理技术领域。本发明首先对采集的树叶样本图像进行灰度化、图像增强和去噪等预处理操作;然后通过自适应阈值算法对预处理后的图像进行分割,有效地表征样本图像的纹理信息;选择RGB颜色空间提取样本图像的颜色特征,同时依据灰度共生矩阵提取分割图像的纹理特征;最后选择支持向量机模型利用交叉验证算法对样本图像进行分类识别,先采用网格寻优法对SVM模型的主要参数进行优化,再选取识别准确率最优的参数建立SVM分类识别模型。本发明可以通过训练使得计算机能够自动识别树叶的病虫害,极大的减少了空间和时间开销,也提高了识别的精度,具有快速、准确和鲁棒性强的特点。

Patent Agency Ranking