一种基于悬浮微粒的电离辐射探测方法和装置

    公开(公告)号:CN115047509B

    公开(公告)日:2023-01-06

    申请号:CN202210982739.1

    申请日:2022-08-16

    Abstract: 本发明公开了一种基于悬浮微粒的电离辐射探测方法和装置。所述的方法,1)在悬浮光力系统中,通过光场、电场或者磁场悬浮微米到纳米尺度的微粒,并利用光学方法探测悬浮微粒的运动状态;2)当外界的α粒子入射到悬浮光力系统中时,α粒子电离出气体环境中的正负离子,吸附于悬浮微粒,进而改变悬浮微粒的净电量;3)通过探测悬浮微粒在外加电磁场作用下的运动响应来探测微粒的净电量,从而实现电离辐射的探测。装置包括敏感单元模块、气压调节模块、电磁施加模块、环路校准模块和电离辐射探测模块。本发明可利用悬浮微粒实现电离辐射的探测,从而为电离辐射探测装置的集成化和小型化提供了全新的解决方案。

    一种基于倏逝波的无损准确可重复捕获微球的方法和装置

    公开(公告)号:CN111986830B

    公开(公告)日:2022-12-20

    申请号:CN202010824706.5

    申请日:2020-08-17

    Abstract: 本发明公开了一种基于倏逝波的无损准确可重复捕获微球的方法和装置。激光向薄基板底面照射,激光生成倏逝波作用于薄基板底面吸光产生热膨胀,对微球向上作用力,克服粘附力脱离薄基板上升,进入光阱捕获区域,实现微球在光阱捕获区域被捕获而稳定悬浮;结束后关闭光阱捕获区域的捕获,微球在重力作用下竖直落回到薄基板表面;重复步骤进行可重复光悬浮。本发明能准确控制目标微球脱离基板进入光阱捕获区域的运动状态,实现无损、可重复的光悬浮,提高光捕获微球的质量和效率。

    引力加速度调制装置及方法

    公开(公告)号:CN115079737B

    公开(公告)日:2022-12-02

    申请号:CN202210860338.9

    申请日:2022-07-22

    Abstract: 本发明公开了一种引力加速度调制装置及方法。引力加速度调制装置,包括微粒、调制模块、真空模块、捕获模块、探测模块;调制模块包括顺次相连的飞轮、旋转轴、联轴器、减速器、电机、三轴精密位移台、电机支座;其中电机通过减速器和联轴器带动飞轮周期性的相对位置运动,实现对力或加速度调制;真空模块用于提供超高真空环境;捕获模块利用磁场、光场或电场捕获微粒;探测模块用于探测微粒的运动信息;调制模块、捕获模块整体安装在真空模块内。本发明利用万有引力定力定律,免去质量误差带来的影响,设计了飞轮结构,可实现微粒信号的二倍频调制,避免了电机本身固有频率噪声的影响,实现对引力加速度标定,可应用在量子传感、精密测量等领域。

    基于光悬浮多微球阵列的加速度测量方法及装置

    公开(公告)号:CN114859076B

    公开(公告)日:2022-10-21

    申请号:CN202210788629.1

    申请日:2022-07-06

    Inventor: 李闯 董莹 胡慧珠

    Abstract: 本发明公开一种基于光悬浮多微球阵列的加速度测量方法及装置,采用全息光镊将N个纳米微粒悬浮在光学腔中,N≥2,通过激光驱动光学腔,使光学腔内产生稳定的驻波光场;通过调节全息光镊,使得每个纳米微粒与光学腔中光场的耦合强度相等,形成稳定的光悬浮多微球阵列探测系统;通过测量光学腔的透射光,获取透射光的功率谱密度;利用加速度功率谱密度与透射光功率谱密度的关系,计算加速度功率谱密度,从而获取加速度信息。本发明提出的加速度测量方法利用机械振子的集体质心运动进行加速度测量可以等效地增大机械振子质量的原理,提升加速度测量灵敏度。本发明的方法的加速度测量灵敏度随机械振子数量的增加不断提高。

    一种基于悬浮微粒的信号通讯方法和装置

    公开(公告)号:CN114826851B

    公开(公告)日:2022-10-04

    申请号:CN202210732153.X

    申请日:2022-06-27

    Abstract: 本发明公开了一种基于悬浮微粒的信号通讯方法和装置。方法步骤如下:1)制备微粒悬浮状态;2)调控与测量悬浮微粒带电量;3)校准悬浮微粒电磁响应特性;4)施加电磁通讯信号;5)获取与解调电磁通讯信号。装置,包括悬浮捕获模块、电荷测控模块、电磁响应校准模块和通讯信号探测与解调模块;电磁响应校准模块用于提前获取悬浮微粒的必要先验信息,测量悬浮微粒的基底噪声和频域的电磁响应传递函数;通讯信号探测与解调模块用于恢复外部的电磁响应信号,并解调出信号的码元信息。针对现有的无线通讯系统所用的天线体积庞大、接收灵敏度偏低的问题,本发明至少具备两个方面的优势:一是悬浮微粒的体积更小,二是系统具有更高的接收灵敏度。

    可伸缩式吸气剂泵抽真空装置及应用方法

    公开(公告)号:CN114753991B

    公开(公告)日:2022-10-04

    申请号:CN202210679130.7

    申请日:2022-06-16

    Abstract: 本发明公开了一种可伸缩式吸气剂泵抽真空装置及应用方法。装置包括机械泵、分子泵、实验平台、离子泵、伸缩式吸气剂泵结构、真空规、真空腔、金属角阀、小抽气管、分子泵卡箍、大抽气管、大抽气管卡箍、硬管支撑、电动阀、硬管、硬弯管、离子泵支撑、离子泵角阀、支撑柱、离子泵直通管。其中伸缩式吸气剂泵结构由短直通管、螺钉、插板阀、伸缩管、直线导轨、调节架、手轮、手摇杆、右支架、定位块、左支架、吸气剂泵、左支架支撑、右支架支撑、调节丝杠等组成。利用伸缩式吸气剂泵结构,带动吸气泵剂整体移动,吸气剂泵远离或靠近真空腔,可适用经常破空的实验环境系统,可应用在量子传感、生物、化工、环境监测等需要抽超高真空领域。

    一种三轴光纤陀螺仪用ASE光源

    公开(公告)号:CN112556680B

    公开(公告)日:2022-08-26

    申请号:CN202011332039.5

    申请日:2020-11-24

    Abstract: 本发明公开了一种三轴光纤陀螺仪用ASE光源,多段独立的掺铒光纤通过980nm波长耦合器共享一个980nm泵浦激光器,所述的掺铒光纤至少为三段,所述的耦合器的端口至少为3×3;多段独立的掺铒光纤的b端口做折纤处理,或者与一个反射镜相连从而形成双程ASE光源;采用1550nm波长耦合器将多段独立掺铒光纤输出的光波进行和波后再分为多束光波,从而提高输出光波的谱宽,进而抑制光纤陀螺仪相对强度噪声,所述的1550nm波长耦合器的端口至少为3×3。本发明可以提高三轴陀螺仪用光源集成度和降低成本,通过耦合器将多路独立的掺铒光纤输出光波进行和波后再分为多束输出光波,提高光纤陀螺仪输入光源光波的等效谱宽,实现光纤陀螺仪相对强度噪声的抑制,提高检测精度。

    用于悬浮光镊捕获气溶胶的方法和装置

    公开(公告)号:CN114088478B

    公开(公告)日:2022-05-24

    申请号:CN202210076281.3

    申请日:2022-01-24

    Abstract: 本发明公开了用于悬浮光镊捕获气溶胶的方法和装置,首先将待悬浮光镊捕获的气溶胶样品通过超声雾化器雾化成微小液滴;液滴经减速后通过导流通道进入圆柱形腔室;打开悬浮光镊的激光器,在圆柱形腔室内形成光阱;光阱捕获圆柱形腔室内的液滴。本发明方法采用球形腔室或带有网孔的导流通道减小雾化液滴的流速,使得减速后的液滴在自身重力作用下缓慢流经圆柱形腔室内形成光阱的有效捕获区域,提高光阱捕获液滴的效率,同时借助微小型抽气泵将圆柱形腔室内残余的液滴排出,进一步提高悬浮光镊进行气溶胶特性测量的稳定性。

    一种四象限探测模块及其应用方法

    公开(公告)号:CN114413769A

    公开(公告)日:2022-04-29

    申请号:CN202210335972.0

    申请日:2022-04-01

    Abstract: 本发明公开一种四象限探测模块及其应用方法。四象限探测模块包括四象限探测器、可调RLC网络、直流信号放大模块、交流信号放大模块和信号调理电路。四象限探测器将光信号转换为电流信号;可调RLC网络将电流信号的直流分量和交流分量分离,并且利用可微调电阻网络实现对探测器结电容的微调,利用感抗抑制信号频率处的电压噪声增益;交流信号放大模块将电流交流分量转换成电压信号,其中的可微调反馈电阻网络实现对信号增益的微调。本发明通过可微调电阻网络提升了四象限探测模块象限间响应一致性,从而优化共模抑制比;利用电感的响应特性,大幅优化信号频率附近的噪声性能,具有高共模抑制比、高增益兼具低噪声的优点,适用于微弱信号探测领域。

    一种基于双频激光干涉对光镊系统微粒位移探测的装置

    公开(公告)号:CN112747669B

    公开(公告)日:2022-02-11

    申请号:CN202011462254.7

    申请日:2020-12-09

    Abstract: 本发明公开了一种基于双频激光干涉对光镊系统微粒位移探测的装置。第一激光器发出第一光束,第一光束经过扩束准直系统后耦合到光纤耦合器中,第一光束经光纤耦合器出射的光束同时入射到凹面镜和照射到微粒上,经凹面镜反射回来的光束照射到微粒上,由凹面镜反射回来的光束形成捕获光束,捕获光束形成光阱对微粒进行捕获。本发明将双频激光干涉技术和凹面镜单光束光镊结合一起,通过测量光阱中微粒运动的多谱勒频移信息,并通过相位解调技术等获得微粒的位移信号,具有宽频带,测量精度高,抗干扰能力强,结构简单等优点。

Patent Agency Ranking