-
公开(公告)号:CN114638272A
公开(公告)日:2022-06-17
申请号:CN202210541225.2
申请日:2022-05-19
IPC: G06K9/00 , G06K9/62 , A61B5/1455 , A61B5/117 , A61B5/00
Abstract: 本发明涉及非接触式生理信号检测领域,尤其涉及一种基于指尖脉搏波信号的身份识别方法和装置,该方法包括:步骤一,利用血氧仪采集人体指尖的脉搏波信号;步骤二,将采集到的脉搏波信号进行滤波、峰值检测、信号截取对齐以及计算导数并归一标准化的处理,同时保存对应的个人身份标识号;步骤三,重复步骤一至步骤二,将步骤二中得到的信号数据保存为数据集;步骤四,将数据集输入特征提取网络进行特征提取,后输入分类网络训练,训练完成后保存训练好的网络参数,得到训练好的身份识别模型;步骤五,利用训练好的身份识别模型,对输入的脉搏波信号进行识别,预测出对应身份。本发明相比现有的其他方法,具有更高的识别准确率的优点。
-
公开(公告)号:CN113892930B
公开(公告)日:2022-04-22
申请号:CN202111504748.1
申请日:2021-12-10
Applicant: 之江实验室
Abstract: 本发明公开了一种基于多尺度心率信号的面部心率测量方法。该方法将含有人脸面部区域的视频流逐帧进行皮肤分割,对特征提取模块进行训练,将人脸视频流输入训练好的特征提取模块中,输出为多个心率值,将所有输出心率值求平均,获得最终的心率预测值。本发明的方法可得到高精度心率估计值,实现无接触心率检测。
-
公开(公告)号:CN113435588B
公开(公告)日:2022-01-04
申请号:CN202110988504.9
申请日:2021-08-26
Applicant: 之江实验室
Abstract: 本发明公开了基于深度卷积神经网络BN层尺度系数的卷积核嫁接方法,首先设置两组不同的训练策略;然后采用两组策略训练同构的两个深度卷积神经网络,训练过程中,对两个深度卷积神经网络的BN层尺度系数进行稀疏化;同时采用特征图学习的方式,保持两个深度卷积神经网络的层内卷积核权值分布的一致性;根据BN层尺度系数,每隔一定迭代次数,将其中一个深度卷积神经网络层内BN层对应尺度系数小的卷积核,替换为另一个深度卷积神经网络层内BN层对应尺度系数大的卷积核。
-
公开(公告)号:CN113837152A
公开(公告)日:2021-12-24
申请号:CN202111410772.9
申请日:2021-11-25
Applicant: 之江实验室
Abstract: 本发明公开了一种表格图片文本智能检测方法及系统,系统包含文本自动检测模块、位置变换矩阵模块和位置加权模块。方法包括:S1,检测目标表格图片当中所有可能的文本;S2,自动生成相对位置关系的变换矩阵;S3,通过位置加权,计算最终检测结果。本发明针对表格图片文本,采用深度学习训练的方式,通过将通用自动文本检测方法与表格文本之间相对位置相结合,不仅依赖于文本目标自身的位置,还依赖于文本间的相对位置关系,最终以位置变换矩阵的形式表示,还通过对目标检测结果进行加权来确认每个目标的具体位置,从而提高表格图片文本检测精度。
-
公开(公告)号:CN113822262A
公开(公告)日:2021-12-21
申请号:CN202111412831.6
申请日:2021-11-25
Applicant: 之江实验室
Abstract: 本发明公开了一种基于无监督学习的行人重识别方法,在特征存储器中只保存聚类得到的类中心,采用分组采样的方式获取小样本集,并结合难例挖掘的方法更新存储器中的特征向量和特征提取网络模型参数,实现了在无标签数据集上的伪标签自动生成,增强了模型对于噪声数据的鲁棒性,大大减小了存储器对于内存空间的高额要求。本发明剔除了离群样本点对聚类中心的干扰,避免了随机采样导致的过拟合等问题,在小样本迭代过程中不更改数据标签,降低了标签跳变等噪声数据对于模型稳定性的影响,加速了模型的收敛,提高行人重识别模型在不同场景下的泛化能力。
-
公开(公告)号:CN113255899B
公开(公告)日:2021-10-12
申请号:CN202110673166.X
申请日:2021-06-17
Applicant: 之江实验室
Abstract: 本发明公开了一种通道自关联的知识蒸馏方法与系统包括以下步骤:步骤S1:向教师模型和学生模型中输入相同的图片数据,得到学生模型和教师模型的图片特征,选定学生模型和教师模型中需要进行知识蒸馏的特征层;步骤S2:将选定的学生模型和教师模型特征层的通道进行通道自关联;步骤S3:自关联后的教师模型通道通过加权方式传输知识至学生模型通道;步骤S4:根据关联的通道蒸馏知识,并进行训练,在训练时同时优化自关联的二维矩阵和学生模型;S5:部署训练好的学生模型,输入图片数据进行推理测试。
-
公开(公告)号:CN112580614B
公开(公告)日:2021-06-08
申请号:CN202110210499.9
申请日:2021-02-25
Applicant: 之江实验室
Abstract: 本发明公开了一种基于注意力机制的手绘草图识别方法,该方法包括将原始手绘草图输入到一个深度卷积神经网络中,得到最后一个卷积层输出的特征图;将特征图输入到一个通道注意力模块中,得到基于通道注意力优化后的特征图;训练一个用于预测手绘草图垂直翻转的分类网络,将原始手绘草图输入到训练好的分类网络中,得到垂直翻转空间注意力图;联合基于通道注意力优化后的特征图和垂直翻转空间注意力图,计算得到垂直翻转空间注意力优化后的特征图;最后经过全连接层输出识别的结果。本发明的优点:采用通道注意力和垂直翻转空间注意力对卷积神经网络的特征进行优化,能够使网络关注于学习更有判别力的部分,从而有效提高手绘草图的识别精度。
-
公开(公告)号:CN112597979B
公开(公告)日:2021-06-01
申请号:CN202110236301.4
申请日:2021-03-03
Applicant: 之江实验室
Abstract: 本发明提出了一种实时更新余弦夹角损失函数参数的人脸识别方法,属于计算机视觉中的人脸识别领域。该方法包括:(1)收集人脸图像,并将人脸图像按个体分类,并对每个人脸图像进行数据标注;(2)对人脸图像进行图像预处理,得到人脸图像数据集;(3)初始化余弦夹角损失函数的的余弦值放大尺度和余弦夹角间隔;(4)将图像数据集送入卷积神经网络,实时计算更新余弦值放大尺度和余弦夹角间隔,直至完成对卷积神经网络的训练,(5)将需要进行比对判断的人脸图像输入训练好的卷积神经网络中,输出人脸特征向量,用于进行人脸识别匹配。本发明的人脸识别方法具有训练收敛速度快,识别准确率高的特点。
-
公开(公告)号:CN112507997B
公开(公告)日:2021-05-11
申请号:CN202110170037.9
申请日:2021-02-08
Applicant: 之江实验室
Abstract: 本发明公开了一种基于多尺度卷积和感受野特征融合的人脸超分辨系统,该系统包括依次连接的粗超分辨率模块、粗上采样模块、第一多尺度卷积模块、高低频增强模块、精超分辨率模块、精上采样模块、第三度尺度卷积模块、图像增强模块和对抗网络;人脸关键点提取网络和高低频增强模块分别与融合模块连接,所述融合模块、粗超分辨率模块分别与精超分辨率模块连接。该系统适用于人脸的增强,尤其是小分辨率的人脸,通过高低频特征交互增强和人脸先验知识的利用,具有放大倍数高,高频细节还原度高的特点;采用感受野模块有助于提取细节特征并降低计算复杂度。
-
公开(公告)号:CN112597979A
公开(公告)日:2021-04-02
申请号:CN202110236301.4
申请日:2021-03-03
Applicant: 之江实验室
Abstract: 本发明提出了一种实时更新余弦夹角损失函数参数的人脸识别方法,属于计算机视觉中的人脸识别领域。该方法包括:(1)收集人脸图像,并将人脸图像按个体分类,并对每个人脸图像进行数据标注;(2)对人脸图像进行图像预处理,得到人脸图像数据集;(3)初始化余弦夹角损失函数的的余弦值放大尺度和余弦夹角间隔;(4)将图像数据集送入卷积神经网络,实时计算更新余弦值放大尺度和余弦夹角间隔,直至完成对卷积神经网络的训练,(5)将需要进行比对判断的人脸图像输入训练好的卷积神经网络中,输出人脸特征向量,用于进行人脸识别匹配。本发明的人脸识别方法具有训练收敛速度快,识别准确率高的特点。
-
-
-
-
-
-
-
-
-