一种社交网络脆弱性评估方法和系统

    公开(公告)号:CN107886441B

    公开(公告)日:2021-01-08

    申请号:CN201710970005.0

    申请日:2017-10-18

    Abstract: 本发明涉及一种社交网络脆弱性评估的方法,包括:采集社交网络中某用户的相关信息,计算得到该用户的档案信息量和博文信息量;以该档案信息量和该博文信息量,得到该用户的个人信息量;以该用户在该社交网络中的朋友数量,及该用户所发布博文信息在该社交网络中的转发次数,得到该用户的信息传播量;以该用户的个人信息量和信息传播量,得到该用户的个人脆弱性评估值;以该个人脆弱性评估值对该用户的个人脆弱性进行评估;以该用户的个人脆弱性评估值,及该用户在该社交网络中的朋友的个人脆弱性评估值,得到该用户的社交网络脆弱性评估值;以该绝对脆弱性评估值对该用户的该社交网络脆弱性进行评估。

    一种融合多尺度视觉信息的虚假新闻检测方法及系统

    公开(公告)号:CN111797326A

    公开(公告)日:2020-10-20

    申请号:CN202010459132.6

    申请日:2020-05-27

    Abstract: 本发明提出一种融合多尺度视觉信息的虚假新闻检测方法,包括:频域特征获取步骤,以卷积神经网络构建频域子网络模型,通过该频域子网络模型获得输入图像的频域特征表示;语义特征获取步骤,以卷积神经网络构建像素域子网络模型,通过该像素域子网络模型获得该输入图像的语义特征表示;图像检测步骤,将该频域特征表示与该语义特征表示进行融合,得到该输入图像的图像表示,并根据该图像表示获得该输入图像为虚假新闻图片的预测概率。本发明还提出一种融合多尺度视觉信息的虚假新闻检测系统,以及一种计算机可读存储介质和包括该计算机可读存储介质的数据处理装置。

    一种用于社交网络图片隐私风险检测与预警的方法及系统

    公开(公告)号:CN111639359A

    公开(公告)日:2020-09-08

    申请号:CN202010323133.8

    申请日:2020-04-22

    Abstract: 一种用于社交网络图片隐私风险检测与预警的方法,包括:步骤一:利用目标检测框架提取图片中关键元素并获得关键元素的信息;步骤二:收集图片隐私与否的数据集,对数据集中的每张图片进行步骤一的操作,然后在整个数据集上进行统计,得出在各类关键元素与隐私、公开图片的关联度,并依此来构建知识图谱;步骤三:利用神经网络提取图片整体、图片关键元素的特征,并利用步骤二中的知识图谱来构建图神经网络,用于融合图片整体、图片关键元素的特征,并得到图片的最终表达;以及步骤四:基于步骤三中图片的最终表达,利用神经网络预测图片的隐私风险。

    一种有争议性新闻线索自动发现的方法及系统

    公开(公告)号:CN106372083B

    公开(公告)日:2019-10-18

    申请号:CN201510435105.4

    申请日:2015-07-22

    Abstract: 本发明公开了一种有争议性新闻线索自动发现的方法及系统,该方法包括:步骤1,利用预设的初始文本对一文本集进行检索,获得多个检索文本;步骤2,对该多个检索文本进行聚类,对每一类的检索文本分别执行摘要提取算法,以获得该类的线索文本;步骤3,利用每类的该线索文本进行检索,获得每类的多个扩充文本;步骤4,利用每类的该多个扩充文本进行特征提取,基于一预设的打分模型对提取得到的每类的特征进行打分,分数高于一阈值的类所对应的线索文本为有争议的新闻线索。本发明可从大量文本中自动发现有争议新闻线索,实现了海量信息的深层信息挖掘,且可不断完善信息挖掘的准确度、有效性。

    基于无监督聚类的长文本可信度评估方法及系统

    公开(公告)号:CN110287314A

    公开(公告)日:2019-09-27

    申请号:CN201910418900.0

    申请日:2019-05-20

    Abstract: 本发明涉及一种基于无监督聚类的长文本可信度评估方法,包括:以已知长文本获取训练数据,提取该训练数据的训练特征以构建训练特征向量集,对该训练特征向量集进行无监督聚类,得到多个训练类心;以待评估长文本获取评估数据,提取该评估数据的评估特征向量;获取该评估特征向量相对该训练类心的评估值,并以该评估值得到该待评估长文本的可信度。本发明通过无监督聚类对长文本进行可信度评估,在实施过程中不需要标注数据,节省了人力、物力与时间,避免了数据中标签稀疏带来的困扰;提取了长文本的文本特征,对于可信度评估任务更加适用,使用该模型得到的文本的可信度更具有可解释性,同时在平台之间可以迁移。

    一种基于检索辅助的谣言检测方法及系统

    公开(公告)号:CN110188284A

    公开(公告)日:2019-08-30

    申请号:CN201910341053.2

    申请日:2019-04-25

    Abstract: 本发明提出一种基于检索辅助的谣言检测方法及系统,包括:获取待谣言检测的对象信息,并使用谣言检测算法对该对象信息进行判定,得到该对象信息的初步谣言检测结果;集合已标记谣言标签的谣言信息作为谣言库,抽取得到该对象信息的关键词,以该关键词检索该谣言库,得到该谣言库中与该对象信息相似的多条相似谣言,计算每一条该相似谣言与该对象信息之间的相似度,以为每一条该相似谣言赋予权重,并根据每一条该相似谣言的谣言标签和权重,加权求和得到该多条相似谣言的辅助谣言检测结果;根据该初步谣言检测结果和该辅助谣言检测结果,综合判定该对象信息的谣言标签。

    一种有争议性新闻线索自动发现的方法及系统

    公开(公告)号:CN106372083A

    公开(公告)日:2017-02-01

    申请号:CN201510435105.4

    申请日:2015-07-22

    Abstract: 本发明公开了一种有争议性新闻线索自动发现的方法及系统,该方法包括:步骤1,利用预设的初始文本对一文本集进行检索,获得多个检索文本;步骤2,对该多个检索文本进行聚类,对每一类的检索文本分别执行摘要提取算法,以获得该类的线索文本;步骤3,利用每类的该线索文本进行检索,获得每类的多个扩充文本;步骤4,利用每类的该多个扩充文本进行特征提取,基于一预设的打分模型对提取得到的每类的特征进行打分,分数高于一阈值的类所对应的线索文本为有争议的新闻线索。本发明可从大量文本中自动发现有争议新闻线索,实现了海量信息的深层信息挖掘,且可不断完善信息挖掘的准确度、有效性。

    一种基于大型语言模型的文生图模型动态评估方法及装置

    公开(公告)号:CN118377928A

    公开(公告)日:2024-07-23

    申请号:CN202410501754.9

    申请日:2024-04-25

    Abstract: 本发明提出一种基于大型语言模型的文生图模型动态评估方法,包括:LLM根据所选的主题生成测试输入文本,待评估的文生图模型根据测试输入文本生成测试图片,记录测试图片生成的准确率,并判断准确率是否低于阈值,若是则执行文本调整步骤;调整测试输入文本,得到多个调整输入文本,文生图模型根据测试输入文本生成调整图片,将准确率低于阈值的调整图片对应的调整输入文本作为失败文本;LLM根据当前主题下所有测试输入文本和调整输入文本的图片生成的准确率,分析文生图模型的对错原因,LLM分析对错原因和当前主题,生成新的主题,再次执行文本生成步骤,直到达到用户需求,保存当前所有失败文本作为文生图模型的评估结果。

    一种基于记忆存储的持续对抗防御方法及系统

    公开(公告)号:CN117592547A

    公开(公告)日:2024-02-23

    申请号:CN202311575231.0

    申请日:2023-11-23

    Abstract: 本发明提出一种基于记忆存储的持续对抗防御方法,包括:获取持续学习模型的分类器的类别;对该持续学习模型的记忆训练数据和当前任务的当前训练数据生成对抗样本,将该对抗样本输入该持续学习模型,进行持续对抗训练;并在该持续对抗训练中,对该对抗样本的类别logit值以校正值进行校正;以完成训练后的持续学习模型执行该当前任务。本发明还提出一种基于记忆存储的持续对抗防御系统,以及一种用于实现基于记忆存储的持续对抗防御的数据处理装置。

    基于人脸时序信息的人脸视频深度伪造检测方法与装置

    公开(公告)号:CN117275064A

    公开(公告)日:2023-12-22

    申请号:CN202311211903.X

    申请日:2023-09-19

    Inventor: 唐胜 王志浩 曹娟

    Abstract: 本发明提出一种基于人脸时序信息的人脸视频深度伪造检测方法和装置,包括:获取以标准真伪标签的人脸视频作为训练数据;通过基础网络对训练数据中多个视频帧提取特征,得到原始特征,以原始特征进行三维人脸重建,得到重建图像;基础网络对重建图像提取特征,得到重建特征;特征差分模块对原始特征以及重建图进行差分并对差分结果进行降维,得到差分特征;将重建特征和差分特征作为查询特征,并将原始特征作为待查询特征,分别输入查询模块,根据查询特征与待查询特征的相似度,对待查询特征的重新加权,得到加权差分特征和加权重建特征;自适应融合模块将原始特征、加权差分特征和加权重建特征加权融合后进行真伪分类。

Patent Agency Ranking