-
公开(公告)号:CN119885205A
公开(公告)日:2025-04-25
申请号:CN202510041633.5
申请日:2025-01-10
Applicant: 电子科技大学
IPC: G06F21/57 , G06F11/3668
Abstract: 本发明公开了一种面向AI移动应用的自动化模糊测试方法,属于智能设备安全技术领域,包括对AI移动应用进行分类,对每个类型生成一危险或禁止问题集,并制作一适用于所有危险或禁止问题集的通用越狱场景模板;获取一AI移动应用,识别潜在AI入口;确认潜在AI入口是否为AI入口;得到该AI入口对应AI移动应用的类型;结合类型对应的危险或禁止问题集和通用越狱场景模板,生成攻击问题,攻击AI移动应用得到生成信息,并用大语言模型判断是否存在安全漏洞。本发明首次提供了全自动方法来检测AI移动应用中的安全漏洞问题,不仅能提升测试效率和测试充分性、还能提高移动应用的健壮性和可靠性。可广泛应用于AI移动应用自动化安全测试领域。
-
公开(公告)号:CN119179781A
公开(公告)日:2024-12-24
申请号:CN202411339278.1
申请日:2024-09-25
Applicant: 电子科技大学
Abstract: 本发明公开了一种基于注意力机制和局部敏感哈希的黑盒对抗文本生成方法,包括步骤:基于注意力机制初始化对抗文本,删除对抗文本中的冗余噪声,基于局部敏感哈希优化对抗文本,得到最优对抗文本。本发明初始化对抗文本阶段引入注意力机制,通过优先扰动对原文本重要性高的词减少初始化对抗文本阶段对目标模型的查询次数;在优化对抗文本阶段的搜索过渡词和估计更新方向两个过程中引入局部敏感哈希方法,通过按句级向量相似性对候选文本分簇减少对抗文本优化阶段对目标模型的查询次数。两者结合能有效降低整个对抗文本生成过程对目标模型的查询次数。
-
公开(公告)号:CN114925699A
公开(公告)日:2022-08-19
申请号:CN202210470248.9
申请日:2022-04-28
Applicant: 电子科技大学
IPC: G06F40/30 , G06F40/205 , G06F40/166 , G06F16/33 , G06N3/04 , G06N3/08
Abstract: 本发明公开了一种基于风格变换的高迁移性对抗文本生成方法,包括如下步骤:S1、构建预训练模型,包括构建原始替代模型Forg、构建释义生成器P、构建特征提取器E和特征解码器D;S2、构建测试文本的向量表示集和替代模型集F;所述测试文本的向量表示集包括语义特征向量集Vp、缩放因子集和风格特征向量集Vs;S3、构建任务集,包括构建总任务集Task,划分查询任务集Taskqr和支持任务集Tasksr;S4、利用元学习优化策略获取风格特征噪声向量δ*;S5、生成对抗文本x*。本发明通过结合风格变换和元学习策略,在黑盒场景下能生成具备强攻击能力、高迁移性的对抗文本。
-
公开(公告)号:CN111666872B
公开(公告)日:2022-08-05
申请号:CN202010500433.9
申请日:2020-06-04
Applicant: 电子科技大学
IPC: G06V40/20 , G06V10/774 , G06V10/764 , G06V10/82 , G06K9/62 , G06N3/04
Abstract: 本发明公开了一种数据不平衡下的高效行为识别方法,包括如下步骤:步骤1,根据样本数据量将样本划分为两个类别,然后采用随机均分算法重新构建样本集,得到数据量平衡的样本集D1和D2;步骤2,将样本集D1和D2分别划分训练集和测试集;步骤3,构建两个基础网络模型;步骤4,利用样本集D1和D2的训练集训练两个基础网络模型;步骤5,利用训练好的两个基础网络模型对样本集D1和D2的测试集进行预测。本发明中通过样本划分,并对两个基础网络模型单独进行训练,得到两个在数据更为均衡的情况下完整学习了小类别数据集的SSD模型,能够在现有模型基础上提升少数类的识别率。
-
公开(公告)号:CN111652081B
公开(公告)日:2022-08-05
申请号:CN202010401842.3
申请日:2020-05-13
Applicant: 电子科技大学
IPC: G06V20/70 , G06V20/40 , G06V20/56 , G06V10/26 , G06V10/62 , G06V10/44 , G06V10/74 , G06V10/80 , G06V10/82
Abstract: 本发明公开了一种基于光流特征融合的视频语义分割方法,包括如下步骤:步骤1,判定视频序列的当前视频帧图像为关键帧图像或非关键帧图像;若为关键帧图像,则执行步骤2,若为非关键帧图像,则执行步骤3;步骤2,提取当前视频帧图像的融合位置依赖信息和通道依赖信息的高层语义特征图;步骤3,通过计算光流场得到当前视频帧图像的高层语义特征图;步骤4,对步骤2和步骤3得到的高层语义特征图进行上采样,得到语义分割图。本发明的方法中融入了光流场和注意力机制思想,可以提升视频语义分割的速率和准确率。
-
公开(公告)号:CN111340066B
公开(公告)日:2022-05-31
申请号:CN202010084341.7
申请日:2020-02-10
Applicant: 电子科技大学
Abstract: 本发明公开了一种基于几何向量的对抗样本生成方法,包括:步骤1,数据预处理;步骤2,模型预训练;步骤3,重复步骤(a)‑(f),直到收敛,得到DGA域名对抗样本:(a)将合法域名输入ATN网络生成合法域名对抗样本,并得到扰动损失;(b)将合法域名和以及合法域名对抗样本输入噪声扰动方向函数得到噪声;(c)将噪声和DGA域名输入扰动网络得到DGA域名对抗样本;所述扰动网络为基于几何向量的扰动网络;(d)将DGA域名对抗样本输入目标网络,得到目标网络损失;(e)利用扰动损失和目标网络损失得到目标损失函数;(f)通过最小化目标损失函数更新ATN网络。本发明可以针对特定DGA类别生成其对抗样本。
-
公开(公告)号:CN112508991B
公开(公告)日:2022-05-10
申请号:CN202011318378.8
申请日:2020-11-23
Applicant: 电子科技大学
IPC: G06T7/194 , G06T7/13 , G06T5/00 , G06T5/30 , G06V10/44 , G06V10/774 , G06V10/80 , G06V10/82 , G06K9/62 , G06N3/04 , G06N3/08
Abstract: 本发明提供一种前后景分离的熊猫照片卡通化方法包括:获取熊猫照片数据集和卡通图像数据集并进行图像预处理:构建熊猫卡通图像生成模型;所述熊猫卡通图像生成模型包括生成器和判别器,所述生成器包括前景生成分支、后景生成分支和前后景合成分支;步骤4,定义所述生成器的损失函数;利用定义的损失函数训练所述熊猫卡通图像生成模型;将待卡通化的熊猫照片输入所述训练好的熊猫卡通图像生成模型,得到卡通化后的熊猫照片。相比于现有技术,本发明中(1)前后景分别处理的方法可以有效突出相对简洁的前景主体,(2)通过边缘增强和边缘模糊的处理能够得到边缘清晰的卡通化熊猫图像,(3)网络结构比较简单,在获得卡通效果的同时拥有较小的训练成本。
-
公开(公告)号:CN113392899A
公开(公告)日:2021-09-14
申请号:CN202110650074.X
申请日:2021-06-10
Applicant: 电子科技大学
Abstract: 本发明公开了一种基于二值化图像分类网络的图像分类方法,包括以下步骤:S1:采集原始图像,并对原始图像进行初始化;S2:根据初始化后的原始图像,搭建图像分类网络;S3:利用图像分类网络的softmax分类器进行图像分类。该图像分类方法对传统图像分类中运算量最大的卷积运算模块的卷积核进行二值化处理,使用4个同规格的二值化卷积核进行线性近似,节约算法存储空间开销。
-
公开(公告)号:CN111431863B
公开(公告)日:2021-04-27
申请号:CN202010127938.5
申请日:2020-02-28
Applicant: 电子科技大学
Abstract: 本发明公开了一种基于关系网络的主机入侵检测方法,包括:步骤1,对主机系统调用序列样本集进行特征化处理;步骤2,将经步骤1处理后的数据集划分为训练集、支持集和测试集;再将训练集划分为样例集和查询集;步骤3,构建关系网络模型;所述关系网络模型包括嵌入模块、连接模块和关系模块;步骤4,定义关系网络模型的目标函数;步骤5,训练构建的关系网络模型,得到主机入侵检测模型;步骤6,将需要检测的主机系统调用序列经过步骤1后输入训练好的主机入侵检测模型进行主机入侵检测。本发明提出一种基于关系网络的主机入侵检测方法,该方法可以在小样本的情况下既可以实现已有入侵方式的主机检测也可以实现未知入侵方式的主机入侵检测。
-
公开(公告)号:CN112508991A
公开(公告)日:2021-03-16
申请号:CN202011318378.8
申请日:2020-11-23
Applicant: 电子科技大学
Abstract: 本发明提供一种前后景分离的熊猫照片卡通化方法包括:获取熊猫照片数据集和卡通图像数据集并进行图像预处理:构建熊猫卡通图像生成模型;所述熊猫卡通图像生成模型包括生成器和判别器,所述生成器包括前景生成分支、后景生成分支和前后景合成分支;步骤4,定义所述生成器的损失函数;利用定义的损失函数训练所述熊猫卡通图像生成模型;将待卡通化的熊猫照片输入所述训练好的熊猫卡通图像生成模型,得到卡通化后的熊猫照片。相比于现有技术,本发明中(1)前后景分别处理的方法可以有效突出相对简洁的前景主体,(2)通过边缘增强和边缘模糊的处理能够得到边缘清晰的卡通化熊猫图像,(3)网络结构比较简单,在获得卡通效果的同时拥有较小的训练成本。
-
-
-
-
-
-
-
-
-