基于全卷积神经网络多尺度特征的眼底图像血管分割方法

    公开(公告)号:CN111242949B

    公开(公告)日:2021-06-18

    申请号:CN202010002508.0

    申请日:2020-01-02

    Abstract: 一种基于全卷积神经网络多尺度特征的眼底图像血管分割方法,包括以下步骤:1)对眼底视网膜图像进行预处理;2)将预处理后的图像分割成图像块进行数据扩充;3)构建卷积神经网络模型,并利用扩充后的数据进行网络训练;4)将训练好的模型进行测试,得到分割结果。本发明通过连接一种编码和两种不同的解码结构,并采用多种跳过连接,可以克服血管图像数据集数量少、图像质量低导致的分割精度低等缺点,更加充分地融合不同深度的特征,并且有效缓解由网络深度增加导致的梯度消失问题,与传统分割方法相比,拥有更高的准确率与较高的鲁棒性。

    一种基于卷积稀疏表示的多源指纹图像融合方法

    公开(公告)号:CN111666807A

    公开(公告)日:2020-09-15

    申请号:CN202010309929.8

    申请日:2020-04-20

    Abstract: 一种基于卷积稀疏表示的多源指纹图像融合方法,包括如下步骤:1)获取预先配准好内部和外部指纹图像,采用基于卷积稀疏的形态成分分析模型的稀疏编码得到指纹图像的卡通与纹理分量的稀疏系数图;2)根据指纹图像质量评价指标方向确定度的值,确定权重添加方式,将其添加至两种源指纹图像的卡通与纹理分量中;3)采用基于卷积稀疏表示的融合方法对两种源指纹图像的卡通与纹理分量分别进行融合,由加权平均规则获得卡通与纹理分量的融合系数图,对两种分量的融合系数图进行重建得到融合指纹图像。本发明算法能够保留更多的指纹细节、纹理、边缘信息,保存两种源指纹图像质量较好的区域,得到质量更高的融合指纹图像。

    一种基于单幅条纹投影的多视角三维指纹获取方法

    公开(公告)号:CN111597880A

    公开(公告)日:2020-08-28

    申请号:CN202010258441.7

    申请日:2020-04-03

    Abstract: 一种基于单幅条纹投影的多视角三维指纹获取方法,通过基于条纹投影技术同时获取一幅无相位信息的二维指纹图和带有相位信息的指纹条纹图像,对带有相位信息的指纹条纹图像进行相位提取;进行相位解缠得到连续的相位,通过相位信息对单视角三维指纹完成重建;在获取多个视角的三维指纹后,在每个三维指纹对应的二维指纹图上找到端点或者分叉点作为特征点并且与下个相邻视角二维指纹进行特征点匹配,确定二维指纹的特征匹配点集,在通过特征点集的二维信息,在三维指纹上找到匹配的特征点;获得三维指纹的特征匹配点集后,进行三维指纹配准,重建出多视角的三维指纹模型。本发明测量速度快,通过多视角配准的方法采集出更加完整的三维指纹数据。

    一种基于图片相似度计算的脑纤维视角自动选择方法

    公开(公告)号:CN111242169A

    公开(公告)日:2020-06-05

    申请号:CN201911409311.2

    申请日:2019-12-31

    Abstract: 一种基于图片相似度计算的脑纤维视角自动选择方法,包括以下步骤:1)导入异常纤维样本数据和待判定纤维数据,使用ParaView软件绘制成三维图像;2)运行自动视角旋转脚本,分别绕不同方向轴、以不同角度大小来进行图像旋转,并记录每次旋转之后的一组对比图片;3)通过计算每组图片的相似度,寻找差异最大的视角;4)获取差异最大的视角之后,对图片进行降维处理和聚类分析;5)获得聚类结果之后,根据结果来对纤维数据进行抽象,对原始的纤维数据进行抽象简化,提取重要信息,从而达到分析纤维结构特征的目的。本发明可以帮助研究人员快速定位纤维异常区域并进行分析。

    基于差异比较的卷积神经网络可视分析方法

    公开(公告)号:CN109344957A

    公开(公告)日:2019-02-15

    申请号:CN201810860313.2

    申请日:2018-08-01

    Abstract: 一种基于差异比较的卷积神经网络可视分析方法,包括以下步骤:使用Tensorflow设计需要基本网络模型,并在此基础上做参数的修改得出对照模型;对两个模型进行训练,并提取训练完成后的模型参数;将得到的模型参数输入差异分析系统进行差异展示;通过观察差异分析系统的差异概览组件快速找到可能的关键差异点;通过系统提供的交互探索组件对可能的关键差异进行进一步的详细分析,从而得出自己的结论。本发明有效实现差异化可视分析,通过对这些差异的理解用户可以在实际对神经网络模型进行修改的过程中更加有效率地找到关键问题所在。

    一种面向全排列数据的多变量可视分析方法

    公开(公告)号:CN109271567A

    公开(公告)日:2019-01-25

    申请号:CN201810860167.3

    申请日:2018-08-01

    Abstract: 一种面向全排列数据的多变量可视分析方法,包括以下步骤:(1)对原始数据集合中的有限项目使用全排列算法得出所有排序方案;(2)根据原始数据中各个项目两两之间的连接属性,分别对排序方案添加连接属性信息;(3)通过MDS算法将所有排序方案降维聚类;(4)可视化分析:MDS view聚类视图、PCP View平行坐标视图、Perm View矩阵视图,各个视图之间交互分析,引导用户选择自己感兴趣的方案集群和排序方案。本发明从大量的全排列方案中挖掘出特殊的集群模式,将排列方案之间的相似性和差异性通过可视化让用户从中分析并结合自己的需求得出最佳的排序方案。

    一种基于多路特征加权的残差卷积神经网络图像分类方法

    公开(公告)号:CN108764317A

    公开(公告)日:2018-11-06

    申请号:CN201810485738.X

    申请日:2018-05-21

    CPC classification number: G06K9/6267 G06N3/0454

    Abstract: 一种基于多路特征加权的残差卷积神经网络图像分类方法,包括以下步骤:1)模型的输入图像为经过预处理的原始图像,经过预处理的图像裁剪为一个固定尺寸;2)对图像进行较大尺寸的卷积操作和池化操作;3)将步骤2)中输出的特征送入第一个多路特征加权残差模块;4)将步骤3)中多路特征加权残差模块的输出继续送入下一个多路特征加权残差模块,在经过多个多路特征加权残差模块后,输出的特征图像尺寸会逐渐缩小直至变为较小尺寸,最后经过一个平均池化层缩小为特征点;所得特征点直接送入分类层进行分类或经过全连接层后再进行分类。本发明应用于复杂的图像分类任务,丰富了特征表达,避免了因神经网络深度增加导致的梯度消失问题。

    基于混合误差编码的人脸识别方法

    公开(公告)号:CN104915639B

    公开(公告)日:2018-01-09

    申请号:CN201510257647.7

    申请日:2015-05-19

    Abstract: 一种基于混合误差编码的人脸识别方法,为了排除遮挡和光照变化所形成的局部显著特征的影响,利用遮挡和光照变化的空间结构,即:连续性和局部方向性,构造结构化误差,以选取待识别图像的有效特征;为了弥补遮挡和光照变化所造成的特征损失,由稀疏表示理论和图像在高维特征空间中的表示,构造判别误差,以有效地识别人脸图像。结构化误差和判别误差既相互独立又相互影响,本发明将基于这两种误差编码的人脸识别方法称为混合误差编码方法。实验表明,混合误差编码方法,可以有效地识别现实中的人脸图像,为面向现实的人脸识别系统提供了有力的支撑。本发明识别率高、可行性好,特别地,对于有遮挡或光照变化的人脸图像,具有良好的识别性能。

    基于贝叶斯多元分布特征提取的三维人脸识别方法

    公开(公告)号:CN104636729B

    公开(公告)日:2017-12-29

    申请号:CN201510069223.8

    申请日:2015-02-10

    Abstract: 基于贝叶斯多元分布特征提取的三维人脸识别方法,包括三维数据预处理,特征提取和识别分类。本发明的优点是:克服现有技术存在的计算量大的缺点,本发明用三维人脸深度图进行识别,可减少计算量,提高识别效率;并解决单样本识别问题中训练样本不足的问题,用分块方法增加训练样本;在此基础上提出一种基于贝叶斯分析的特征提取方法,使获得的特征具有最小的类内距离和最大的类间距离,即具有最佳的可分离性;并用基于马氏距离的分类方法,获得最优的识别分类。经实验数据证明,本发明的方法具有较好的三维人脸识别结果。

Patent Agency Ranking