-
公开(公告)号:CN118886003B
公开(公告)日:2025-03-28
申请号:CN202411355197.0
申请日:2024-09-27
Applicant: 齐鲁工业大学(山东省科学院) , 山东省计算中心(国家超级计算济南中心)
IPC: G06F21/55 , G06N3/0442 , G06N3/092 , G06Q50/06 , G06N7/01
Abstract: 本发明属于电子数字数据处理的技术领域,更具体地,涉及面向智能电网隐蔽性攻击的时序预测强化学习检测方法。所述方法包括以下步骤:首先,对智能电网进行建模,获得仪器测量数据,并对数据进行预处理;其次,将预处理后的数据作为长短期记忆网络的输入,对智能电网进行状态估计;然后,将智能电网中的攻击检测问题建模为部分可观测马尔可夫决策问题;最后,利用强化学习方法解决部分可观测马尔可夫决策问题,实现智能电网隐蔽性攻击检测。本发明可以以较低的延迟和误检率来检测智能电网中的隐蔽攻击。
-
公开(公告)号:CN118468041B
公开(公告)日:2024-10-01
申请号:CN202410924362.3
申请日:2024-07-11
Applicant: 齐鲁工业大学(山东省科学院) , 山东省计算中心(国家超级计算济南中心)
IPC: G06F18/214 , G06F18/2135 , G06N3/094 , G06N3/098
Abstract: 本发明属于联邦学习数据安全的技术领域,更具体地,涉及基于生成对抗网络的联邦学习拜占庭节点检测方法、装置及计算机可读存储介质。包括客户端与服务器完成数据集的分配以及对客户端和服务器的模型进行初始化;客户端根据全局模型参数更新本地模型参数并进行训练,训练完成后,将更新后的本地模型参数发送至服务器;服务器进行拜占庭节点检测并排除掉拜占庭节点对应的本地模型参数后,对剩余的客户端本地模型参数进行聚合,得到新的全局模型参数,并下发至客户端;重复上述步骤至训练轮次阈值,得到优化的全局联邦学习模型参数。本发明解决了拜占庭攻击者可以通过对本地参数进行修改并发送给聚合服务器,以使得全局模型性能失稳的问题。
-
公开(公告)号:CN118070929B
公开(公告)日:2024-09-17
申请号:CN202410465104.3
申请日:2024-04-18
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06N20/20 , G06F18/2431
Abstract: 本发明属于分布式机器学习系统优化的技术领域,涉及一种分布式机器学习系统中梯度异构双重优化方法、装置、电子设备及存储介质。该方法包括:构建包含#imgabs0#个节点和单个参数服务器的分布式学习系统,节点为诚实节点和恶意节点;基于诚实节点从其局部数据集选取的数据样本,计算并修正数据样本的局部梯度,以迭代优化本地梯度差异;引入动量项,将修正后的局部梯度与上一迭代轮次的动量向量结合,再将得到的当前迭代轮次的动量向量归一化为单位动量向量发送给参数服务器,得到局部聚合结果;对局部聚合结果进行全局聚合,以迭代优化全局梯度差异。本发明解决了由于本地梯度差异和全局梯度差异而制约系统在面对恶意节点和攻击时的鲁棒性表现的问题。
-
公开(公告)号:CN118573480A
公开(公告)日:2024-08-30
申请号:CN202411044928.X
申请日:2024-08-01
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: H04L9/40
Abstract: 本发明涉及一种基于零信任架构的网络安全通信方法、装置、设备及存储介质。本发明旨在构建一个高度安全、灵活且响应迅速的网络通信环境,有效应对现代网络环境中不断演变的安全挑战。采用零信任原则,无论之前是否已被认证,要求在每次通信时都必须重新进行身份验证和信任评估,旨在为网络通信提供全面、智能且高效的安全保障。本发明通过采用数据处理算法和人工智能技术,对网络实体的身份验证、属性分析、交互记录和通信环境,进行实时、动态的信任评估,适用于协同任务等复杂场景,有效识别和防御潜在的安全威胁。本发明能够确保在从数据源到目的地的整个通信过程中,每一步都遵循零信任原则,从而保障通信的安全性和可靠性。
-
公开(公告)号:CN118332584B
公开(公告)日:2024-08-27
申请号:CN202410748751.5
申请日:2024-06-12
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
Abstract: 本发明属于机器学习的技术领域,具体涉及面向分布式机器学习的数据安全治理方法、装置、电子设备和存储介质。该方法包括:节点获取其相邻节点在当前迭代中的局部参数,利用即时可靠分数函数计算相邻节点的即时可靠分数,以为相邻节点构建可靠性模型,设定可靠性模型更新规则,在每次迭代中基于该规则对可靠性模型的可靠指数或不可靠指数进行更新;将更新后的可靠性模型代入Beta分布,获取相邻节点的可靠程度并以此构建可靠节点集合;基于可靠节点集合中所有可靠相邻节点的参数计算当前迭代中节点的聚合结果,结合梯度下降更新节点的参数,将更新后的参数发送至其每个相邻节点。本发明可消除拜占庭攻击的影响,确保学习模型的准确性。
-
公开(公告)号:CN118378255A
公开(公告)日:2024-07-23
申请号:CN202410825770.3
申请日:2024-06-25
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
Abstract: 本发明属于数据安全技术领域,更具体地,涉及一种差分隐私保护约束下抗投毒攻击的联邦学习方法、装置及计算机可读存储介质。包括在客户端定义差分隐私;客户端获取服务端全局模型后使用自身的训练数据集更新本地模型,计算差分隐私噪声并添加到各个客户端的本地模型中;将添加了差分隐私噪声的本地模型发送至服务端,选出恶意客户端;服务端为各个客户端分配权重,然后将各个客户端的本地模型进行聚合得到训练好的全局模型并发送至各个客户端;各个客户端获取训练好的全局模型,完成一次迭代,达到设置训练轮次之后,输出最终全局模型并结束训练。本发明解决了现有技术中投毒攻击防御方案尚无法在差分隐私保护下有效检测出恶意客户端。
-
公开(公告)号:CN118332584A
公开(公告)日:2024-07-12
申请号:CN202410748751.5
申请日:2024-06-12
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
Abstract: 本发明属于机器学习的技术领域,具体涉及面向分布式机器学习的数据安全治理方法、装置、电子设备和存储介质。该方法包括:节点获取其相邻节点在当前迭代中的局部参数,利用即时可靠分数函数计算相邻节点的即时可靠分数,以为相邻节点构建可靠性模型,设定可靠性模型更新规则,在每次迭代中基于该规则对可靠性模型的可靠指数或不可靠指数进行更新;将更新后的可靠性模型代入Beta分布,获取相邻节点的可靠程度并以此构建可靠节点集合;基于可靠节点集合中所有可靠相邻节点的参数计算当前迭代中节点的聚合结果,结合梯度下降更新节点的参数,将更新后的参数发送至其每个相邻节点。本发明可消除拜占庭攻击的影响,确保学习模型的准确性。
-
公开(公告)号:CN117454381B
公开(公告)日:2024-06-04
申请号:CN202311800375.1
申请日:2023-12-26
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06F21/56 , G06F18/214 , G06F21/55
Abstract: 本发明属于信息安全的技术领域,更具体地,涉及一种非独立同分布数据下面向联邦学习的渐进性攻击方法。所述方法服务器端随机初始化一个全局模型作为第一轮全局模型,下发到各个客户端,攻击者选用该全局模型作为攻击模型;所述客户端收到全局模型后在本地执行训练形成局部模型,并将局部模型上传到服务器端;所述服务器端将局部模型更新聚合,形成新一轮全局模型,继续下发至客户端;在每轮训练中,客户端使用接收到的全局模型更新其局部模型并在本地数据集上进行训练;结束训练。本发明解决了现有技术中攻击者为隐藏其攻击操作导致控制模型性能逐渐下降并导致数据非独立同分布联邦学习中的攻击检测变得更加困难的问题。
-
公开(公告)号:CN117196070B
公开(公告)日:2024-01-26
申请号:CN202311474649.2
申请日:2023-11-08
Applicant: 山东省计算中心(国家超级计算济南中心)
Abstract: 本发明属于异构数据下的联邦学习的技术领域,更具体地,涉及一种面向异构数据的双重联邦蒸馏学习方法及装置。所述方法包括全局知识蒸馏和局部知识蒸馏,全局知识蒸馏包括利用全局生成器生成全局伪数据,将全局伪数据输入局部模型和初始聚合模型,并根据模型输出结果对初始聚合模型微调,得到全局模型;局部知识蒸馏包括利用局部生成器生成局部伪数据,将局部伪数据输入局部模型和全局模型,并根据模型输出结果更新局部生成器,再利用更新后的局部生成器生成新的局部伪数据,利用新的局部伪数据更新局部模型。本发明保障数据异构环境下产
-
公开(公告)号:CN116822661A
公开(公告)日:2023-09-29
申请号:CN202311100506.5
申请日:2023-08-30
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
Abstract: 一种基于双服务器架构的隐私保护可验证联邦学习方法,属于人工智能的技术领域。包括:密钥生成中心、客户端、聚合服务器和辅助服务器;本发明采用中国剩余定理CRT对梯度进行压缩,并使用Paillier同态加密算法对本地梯度进行加密;同时,为避免单个服务器被攻陷成为恶意服务器,进而会威胁数据安全,本发明将聚合梯度和聚合哈希标签的计算过程分别分配给了聚合服务器AS和辅助服务器SS两个不同的服务器。本发明通过辅助服务器SS所聚合的哈希标签来辅助客户端验证聚合服务器AS聚合结果的正确性,为联邦学习训练模型的准确性提供了有效保障。
-
-
-
-
-
-
-
-
-