一种音视频片段分类方法及装置

    公开(公告)号:CN111625661B

    公开(公告)日:2023-09-08

    申请号:CN202010408234.5

    申请日:2020-05-14

    Abstract: 本发明实施例公开了一种音视频片段分类方法及装置,所述方法包括:基于待分类音视频片段的视频帧序列提取目标视频帧,基于待分类音视频片段的音频帧序列提取目标音频帧;基于目标视频帧/目标音频帧的第一出现时刻/第二出现时刻及预设子片段时长确定第一音视频子片段/第二音视频子片段;基于第一音视频子片段/第二音视频子片段提取第一视频分量特征和第一音频分量特征/第二视频分量特征和第二音频分量特征;通过预设音视频分类模型基于第一视频分量特征、第一音频分量特征、第二视频分量特征和第二音频分量特征确定待分类音视频片段的音视频分类结果。采用本发明可以提高音视频分类效率,提高音视频分类的鲁棒性和准确率。

    一种基于频带选择的伪造语音检测方法

    公开(公告)号:CN116129913A

    公开(公告)日:2023-05-16

    申请号:CN202211490461.2

    申请日:2022-11-25

    Abstract: 本发明实施例公开了一种基于频带选择的伪造语音检测方法。所述方法包括,获取目标语音信号,将目标语音信号进行变换,获得语谱图特征;对所述语谱图特征进行频带切分,获得低频子带特征和高频子带特征;使用低频子带特征训练语音合成伪造语音检测模型;使用高频子带特征训练录音回放伪造语音检测模型;然后将低频子带特征输入语音合成伪造语音检测模型;以及将交叉匹配的高、低频子带特征输入录音回放伪造语音检测模型,获得最终的语音检测结果。在本发明实施例中,实现了提升神经网络伪造语音检测系统在数据集不匹配等情况下的鲁棒性,以及通过子带选择减小了特征大小,降低了伪造语音检测的参数量和计算量。

    一种文档级敏感信息检测模型训练及预测方法

    公开(公告)号:CN115759043A

    公开(公告)日:2023-03-07

    申请号:CN202211434726.7

    申请日:2022-11-16

    Abstract: 本发明涉及一种文档级敏感信息检测模型训练及预测方法,所述训练方法包括:获取训练样本集;使用上下文编码器对所述文档中的每个句子进行编码,得到句子中每个单词的上下文表示,根据所述句子中最短依赖路径上的关系和所述上下文语义的关联强度,生成文档级实体注意力权重图;将所述注意力权重图输入到图卷积神经网络中,得到文档级跨句语义结构,根据所述文档级跨句语义结构,更新所述注意力权重图;将更新后的注意力权重图输入到分类器中,得到分类分数;根据所述分类分数与所述标签计算损失值,根据所述损失值对所述上下文编码器、图卷积神经网络和分类器进行训练,得到训练完成的模型。

Patent Agency Ranking