-
公开(公告)号:CN107292915A
公开(公告)日:2017-10-24
申请号:CN201710450320.0
申请日:2017-06-15
Applicant: 国家新闻出版广电总局广播科学研究院 , 北京邮电大学
Abstract: 本发明涉及一种基于卷积神经网络的目标跟踪方法,其主要技术特点是:搭建适用于跟踪任务的卷积神经网络框架;在中心对比损失函数约束下对搭建好的卷积神经网络进行参数训练;将训练好的模型结构进行微调,进行在线跟踪。本发明设计合理,以卷积神经网络为结构基础,重点关注不同物体间的类内差异,能够较好地应对背景混杂以及相似目标干扰的情况,具有良好的鲁棒性和较高的精确度。
-
公开(公告)号:CN104219526A
公开(公告)日:2014-12-17
申请号:CN201410440120.3
申请日:2014-09-01
Applicant: 国家广播电影电视总局广播科学研究院 , 北京邮电大学
IPC: H04N19/154 , H04N17/00
Abstract: 本发明涉及一种基于恰可察感知质量判决准则的HEVC率失真优化算法,其技术特点是:分析每一帧中每个宏块的运动模式及静态纹理特征,获得当前宏块的感知质量类型,得到图像显著区域;计算基于视觉显著性区域的恰可察失真阈值;计算基于恰可察失真模型的感知质量;根据基于恰可察失真模型的感知质量进行率失真优化。本发明设计合理,其采用基于恰可察感知质量判决准则进行HEVC率失真优化,能够克服均方误差MSE作为衡量视频失真评价标准的不足,使得最终的编码效果更加符合人眼的主观感知质量,同时,在主观质量不降低的前提下容忍更多的噪声,去除不必要的感知冗余,从而提高了压缩效率,降低了编码后文件的码率。
-