适用于多工况全电量区间的动力电池状态估算方法

    公开(公告)号:CN115097313A

    公开(公告)日:2022-09-23

    申请号:CN202210744779.2

    申请日:2022-06-27

    Abstract: 本发明具体涉及适用于多工况全电量区间的动力电池状态估算方法,包括:建立动力电池的等效电路模型,并对等效电路模型进行参数辨识;采集动力电池的开路电压特征数据并拟合动力电池的SOC‑OCV曲线;基于等效电路模型以及动态特征数据和SOC‑OCV曲线结合各种滤波算法生成对应的端电压预测值和SOC估计值;基于端电压预测值与对应实测值之间的电压残差,结合OWA算子为各种滤波算法的SOC估计值分配对应的加权值;基于各种滤波算法的SOC估计值及对应的加权值进行加权计算,得到动力电池的融合SOC估计值作为其状态估算结果。本发明能够有效融合多种滤波算法的SOC估计结果并实现多种滤波算法的互补,进而能够实现动力电池多工况全电量区间的SOC估计全局最优。

    一种考虑动力电池耐久性影响的峰值功率预测方法

    公开(公告)号:CN112068000B

    公开(公告)日:2022-03-11

    申请号:CN202011034157.8

    申请日:2020-09-27

    Abstract: 本发明提供了一种考虑动力电池耐久性影响的峰值功率预测方法,相对于现有技术除了以电池最高温度值作为约束外,还增加了电池温度的变化率约束和老化约束。由于电池的温升变化率在电池处于任意环境温度时均能很好的反应电池的健康变化情况,因此本发明能够更好的反应电池的健康状态变化情况,减少容量损失,提高耐久性。此外,考虑到电流倍率会对电池的容量衰退轨迹造成影响,本发明从容量损失模型入手推导出电流倍率与容量衰退约束的关系,以容量衰退限值为约束进行持续充放电峰值电流预测,进而实现电池持续充放电峰值功率预测,对于电池的耐久性具有重要意义。

    一种基于动态阈值模型的电动汽车故障诊断方法

    公开(公告)号:CN112285569A

    公开(公告)日:2021-01-29

    申请号:CN202011181863.5

    申请日:2020-10-29

    Abstract: 本发明提供一种基于动态阈值模型的电动汽车故障诊断方法,该方法用于电动汽车中电池系统故障诊断,在阈值模型建立和参数辨识算法两方面进行了改进,在不同温度下进行电路基础特性测试实验,得到等效电路模型参数;建立OCV‑SOC‑Q三维响应面模型;采用带遗忘因子的递推最小二乘法进行模型参数辨识,建立关于R0和τ的动态阈值模型。在实际故障诊断过程当中,利用双扩展卡尔曼滤波算法辨识参数和状态,得到电池R0和τ、容量及SOC;采用温度插值的方法确定参数参考值;确定参数阈值;生成残差;通过对比残差与阈值来判断电池是否发生故障。该方法不仅故障诊断率高,还能避免检测不及时、误警和漏警问题。

    一种考虑动力电池耐久性影响的峰值功率预测方法

    公开(公告)号:CN112068000A

    公开(公告)日:2020-12-11

    申请号:CN202011034157.8

    申请日:2020-09-27

    Abstract: 本发明提供了一种考虑动力电池耐久性影响的峰值功率预测方法,相对于现有技术除了以电池最高温度值作为约束外,还增加了电池温度的变化率约束和老化约束。由于电池的温升变化率在电池处于任意环境温度时均能很好的反应电池的健康变化情况,因此本发明能够更好的反应电池的健康状态变化情况,减少容量损失,提高耐久性。此外,考虑到电流倍率会对电池的容量衰退轨迹造成影响,本发明从容量损失模型入手推导出电流倍率与容量衰退约束的关系,以容量衰退限值为约束进行持续充放电峰值电流预测,进而实现电池持续充放电峰值功率预测,对于电池的耐久性具有重要意义。

    一种基于数据与模型融合的动力电池SOC和SOH估计方法

    公开(公告)号:CN117148162A

    公开(公告)日:2023-12-01

    申请号:CN202311106779.0

    申请日:2023-08-30

    Abstract: 本发明具体涉及基于数据与模型融合的动力电池SOC和SOH估计方法,包括:构建动力电池的变阶次分数阶模型;基于变阶次分数阶模型估计动力电池的解析模型估计SOC;通过深度学习模型构建动力电池的SOC估计模型;基于SOC估计模型估计动力电池的数据驱动估计SOC;通过高斯融合原理对解析模型估计SOC和数据驱动估计SOC进行融合,得到融合SOC值;获取动力电池的容量先验估计值,通过融合SOC值修正容量先验估计值得到修正容量值;将融合估计SOC值和修正容量值作为SOC和SOH的估计结果。本发明能够将数据驱动模型和解析模型的SOC估计结果进行有效融合,并且能够利用准确估计的SOC来修正容量值(SOH),从而提高电池SOC和SOH联合估计的准确性和鲁棒性。

    基于集成学习和实车大数据的电池健康状态估计方法

    公开(公告)号:CN116859259A

    公开(公告)日:2023-10-10

    申请号:CN202310898185.1

    申请日:2023-07-20

    Abstract: 本发明具体涉及基于集成学习和实车大数据的电池健康状态估计方法,包括:对获取的实车电池大数据进行数据切片,生成若干个充电片段数据;基于蒙特卡洛模拟对各个充电片段数据进行容量估计,得到SOH标签;提取各个充电片段数据的健康特征因子,进而结合对应的SOH标签构建训练数据集;构建用于预测电池SOH的Stacking集成学习模型,并通过训练数据集训练Stacking集成学习模型;对于待估计的目标车辆,提取目标车辆实车电池数据中的健康特征因子并输入训练后的Stacking集成学习模型,得到对应的电池SOH估计结果。本发明通过Stacking集成学习模型实现电池SOH预测,并且采用实车电池大数据来训练Stacking集成学习模型,从而提高电池健康状态估计的准确性和实际应用效果。

    一种基于运行大数据的电动汽车动力电池实时安全预警方法

    公开(公告)号:CN115469226A

    公开(公告)日:2022-12-13

    申请号:CN202210913103.1

    申请日:2022-08-01

    Abstract: 本发明公开了一种基于运行大数据的电动汽车动力电池实时安全预警方法,包括以下步骤:S1、数据读取,读取动力电池过往历史数据的总电流、总SOC、以及单体电压;S2、数据清洗,针对缺失数据、重复值数据、错误数据进行清洗;S3、数据分析,提取不同充电时刻的电压值,建立OCV‑SOC曲线;S4、参数辨识,通过拟合得到的OCV‑SOC曲线,对实时采集数据利用Rint模型进行参数辨识,得到充电段的直流内阻和放电段的直流内阻;S5、安全预警,对充电片段内阻和放电片段内阻进行预警。本发明的有益效果在于:基于内阻信息提出的时间空间双维度安全预警方法即能有效诊断出发生故障的具体时间,还能诊断出现故障的具体电池单体,有效的实现电池系统安全精确预警。

Patent Agency Ranking