一种用于籽棉开松有效性的判别方法及系统

    公开(公告)号:CN114937190A

    公开(公告)日:2022-08-23

    申请号:CN202210607648.X

    申请日:2022-05-31

    Abstract: 本发明公开了一种用于籽棉开松有效性的判别方法及系统,属于杂质分选与深度学习技术领域,该方法利用线阵相机和3D深度相机获取籽棉异纤除杂生产线中开松后的籽棉图像及三维信息,将线扫描图像数据与线扫描3D深度数据进行对齐和融合,在图像识别的基础上通过3D深度数据额外获取棉花成团表面深度信息,结合开松机振动数据,判断开松的有效性。本发明将线扫描图像数据与线扫描3D深度数据进行对齐和融合,同时采集开松机的振动数据,提高判别准确率,在相同采样率和采样长度的情况下有效降低对计算机硬件的性能要求,有利于降低运行和维护成本。

    用于深度学习的光谱区域联合识别方法

    公开(公告)号:CN114693975A

    公开(公告)日:2022-07-01

    申请号:CN202210335541.4

    申请日:2022-03-31

    Abstract: 本发明公开一种用于深度学习的光谱区域联合识别方法,属于高光谱成像与深度学习技术领域,利用高光谱图像的频域特征,将光谱数据从空间维度划分为多个区域,实现高精度图像分类;在识别过程中优先识别中心区域并向周围区域进行扩散;在低频占主要成分的分区先进行识别,并将识别结果在联合区域内进行扩散,获得置信度扩散图,对于扩散浓度较低的区域再进行二次识别,实现提高识别速度和识别结果的空间区域一致性。本发明将高光谱技术和频谱分析技术结合,利用被识别物体占据多个连续像素区域的特性,进而提高光谱图像的分类识别速度。

    一种基于数据漂移的太阳辐射在线动态预测方法

    公开(公告)号:CN111242359A

    公开(公告)日:2020-06-05

    申请号:CN202010011980.0

    申请日:2020-01-06

    Abstract: 本发明公开了一种基于数据漂移的太阳辐射在线动态预测方法,属于光伏预测技术领域。将测量的L个样本分为两段,计算两段平均值I(u1)和I(u2);|I(u1)-I(u2)|>Td采用MB预测,若I(t)为连续发生的数据漂移,将X′(t)存储到DC中,若DC数据个数达上限,DC替换DA,并训练更新MA;若I(t)时第一次发生数据漂移,清空DC,并将X′(t)添加或替换到DB中,并训练更新MB;|I(u1)-I(u2)|≤Td采用MA预测,将X′(t)添加或替换到DA中,训练更新MA;输出结果进入下个循环。本发明实现太阳辐射在线动态预测和模型更新。

    基于半监督多任务检测的木地板颜色分类及缺陷检测方法

    公开(公告)号:CN116596891B

    公开(公告)日:2024-09-10

    申请号:CN202310578316.8

    申请日:2023-05-22

    Abstract: 本发明涉及一种基于半监督多任务检测的木地板颜色分类及缺陷检测方法,属于图像处理领域。该方法包括:对输入图像进行缺陷色彩校正;标记少量图像作为数据集输入Color‑RCNN模型训练,实现颜色分类和缺陷检测;训练半监督预测监视网络判别伪标签是否准确的;用Color‑RCNN模型预测剩余的未标记图像,实现颜色分类,生成伪标签,用半监督预测监视网络对伪标签进行判别,将正确的检测框留下,过滤掉错误的检测框;将识别正确的图像加入数据集,重新输入Color‑RCNN模型训练,预测剩余的未标记图像,直至未标记图像全部获得正确标签,实现半监督学习。本发明在图像识别的过程中,通过半监督学习,使用少量人工标记和大量未标记的木地板图像训练出模型,提高了分选的效率。

    基于自学习的实木地板颜色分类方法

    公开(公告)号:CN116310511B

    公开(公告)日:2024-07-30

    申请号:CN202310106101.6

    申请日:2023-02-13

    Abstract: 本发明公开了一种基于自学习的实木地板颜色分类方法,属于机器视觉和图像处理领域。将预处理后的实木地板图像进行区块化处理来数据增强,训练出一个可以识别已知类别和未知类别的循环迭代树;将待分类图像输入到循环迭代树中,得到实木地板的颜色类别,如果不属于已知的颜色种类,则使用少量特定已知的颜色区块替换待识别实木地板的部分位置;循环多次后,如果确定为未知类别,则将该实木地板的颜色更新进循环迭代树中,实现自学习。本发明在图像识别的过程中,通过区块化处理进行数据增强,以达到使用少量实木地板样本即可训练出可用模型。在识别中,不断更新循环迭代树进行自学习,使得模型可以不断学习新的数据,不断增强模型的识别能力。

    一种基于增量式学习的高光谱的杆状物识别方法

    公开(公告)号:CN116778217A

    公开(公告)日:2023-09-19

    申请号:CN202310117786.4

    申请日:2023-02-15

    Abstract: 本发明公开了一种基于增量式学习的高光谱的杆状物识别方法,属于高光谱成像与深度学习领域。根据高光谱图像与类别标签,先通过神经网络对各个类别进行计算,得出不同类别物质的置信水平和特征信息,计算出物质的特征中心,向训练好的神经网络模型中输入新的光谱数据,根据特征信息与各类物质的特征中心的距离,确定未知物质的类别是已知还是未知类别,最后通过增量式学习的方式更新物体的特征中心以及创建新的类别,提高网络对于未知杆状物的识别精度和训练效率。本发明将卷积神经网络的卷积层输出作为特征信息,将全连接层的输出作为置信水平,确定了物体的特征中心,为后续的识别和学习提供了标准,提高了基于深度学习的光谱图像识别的精度。

    基于自学习的实木地板颜色分类方法

    公开(公告)号:CN116310511A

    公开(公告)日:2023-06-23

    申请号:CN202310106101.6

    申请日:2023-02-13

    Abstract: 本发明公开了一种基于自学习的实木地板颜色分类方法,属于机器视觉和图像处理领域。将预处理后的实木地板图像进行区块化处理来数据增强,训练出一个可以识别已知类别和未知类别的循环迭代树;将待分类图像输入到循环迭代树中,得到实木地板的颜色类别,如果不属于已知的颜色种类,则使用少量特定已知的颜色区块替换待识别实木地板的部分位置;循环多次后,如果确定为未知类别,则将该实木地板的颜色更新进循环迭代树中,实现自学习。本发明在图像识别的过程中,通过区块化处理进行数据增强,以达到使用少量实木地板样本即可训练出可用模型。在识别中,不断更新循环迭代树进行自学习,使得模型可以不断学习新的数据,不断增强模型的识别能力。

    基于COMS和高光谱相机的杆状物分选装置及方法

    公开(公告)号:CN114377997B

    公开(公告)日:2022-11-01

    申请号:CN202210035385.X

    申请日:2022-01-12

    Abstract: 本发明公开一种基于COMS和高光谱相机的杆状物分选装置及方法,属于物料分选技术领域,包括进料装置、传送装置、超高速图像预处理单元、工控机、喷阀控制单元和多级分选装置,相机采集物料图像,图像经超高速图像预处理单元处理后,发送至工控机,工控机通过迁移学习算法提取图片特征,使用实例分割算法分析特征图片得到物料中杆状物及异物的特点、位置信息,对物料中杆状物及异物进行识别分割,完成杆状物的分选工作。本发明将分选系统模块化,根据不同物料,自行搭配使用;CMOS工业线阵相机及高光谱相机通过深度学习的方法对图像进行识别分割可以提升杆状物识别的准确率,实现精准分选,成功的解决了人工分选的低精度、高成本的难题。

Patent Agency Ranking