-
公开(公告)号:CN104830325B
公开(公告)日:2016-07-27
申请号:CN201510200560.6
申请日:2015-04-23
Applicant: 华南农业大学
Abstract: 本发明公开了一种荧光碳量子点/SiO2/无机荧光粉三元复合温度传感材料的制备方法,属于复合功能材料领域。所述制备方法以无水柠檬酸、有机硅烷为原料合成硅烷功能化荧光碳量子点,采用溶胶?凝胶法,通过与正硅酸乙酯进行水解共缩聚反应,获得荧光碳量子点/SiO2/无机荧光粉三元复合材料。在100?440K的温度范围内,该复合材料的荧光碳量子点与荧光粉的荧光强度的比值与温度具有良好的线性关系,从而为对温度的传感探测提供了一种基于荧光热猝灭的途径。该类荧光碳量子点/SiO2/无机荧光粉三元复合温度传感材料具备稳定性强、响应快速、灵敏度高等明显优势,具有很好的应用前景。
-
公开(公告)号:CN104844833A
公开(公告)日:2015-08-19
申请号:CN201510177689.X
申请日:2015-04-15
Applicant: 华南农业大学
CPC classification number: Y02A40/252
Abstract: 本发明公开一种新型红色转光膜及其制备方法与应用。本发明的新型红色转光膜包括转光剂和载体;选用红色荧光粉作为转光剂,选用纤维素作为载体;纤维素是地球上储量最丰富的天然高分子,具有安全无毒和可再生的优点,其合成材料不仅力学性能优良,又可生物降解。本发明是对现有农用高分子材料薄膜的重要改变,将天然高分子与转光剂组合起来,既充分利用了现有的可再生绿色资源,避免了合成高分子所带来的环境问题,又在传统的薄膜基础上增加了光学性能。本发明的转光膜在200~600nm之间存在高效激发,可以将紫外光和一部分可见光转换成对植物生长有用的红光,提高光能利用率;可作为农业棚膜和地膜,应用于作物种植和育苗等方面。
-
公开(公告)号:CN102827609B
公开(公告)日:2013-12-25
申请号:CN201210186126.3
申请日:2012-06-07
Applicant: 华南农业大学
IPC: C09K11/84
Abstract: 本发明公开了一种高余辉性能纳米红色长余辉发光材料及其制备方法。该高余辉性能纳米红色长余辉发光材料的化学式为:Y2O2S:xEu3+,yMg2+,zTi4+,其中,x=0.01~0.08,y=0.01~0.06,z=0.01~0.06;Y为钇,O为氧,S为硫,Eu3+为铕离子,Mg2+为镁离子,Ti4+为钛离子;采用醇热合成-煅烧两步法制备而成。本发明以可溶性醋酸盐为原料,制备过程安全无毒、简便易操作、效率高、成本低,易于工业化应用,所得的产品为纳米级别,余辉时间长达1.5h,具有较高的余辉性能、较好的耐候性,可广泛应用于各种器件及纳米标记等领域。
-
公开(公告)号:CN117865123A
公开(公告)日:2024-04-12
申请号:CN202410141625.3
申请日:2024-01-31
Applicant: 华南农业大学
IPC: C01B32/05 , H01M4/587 , H01M10/054
Abstract: 本发明属于电极材料领域,公开了一种钠离子电池用荔枝木基高性能硬碳负极材料及其制备方法和在钠离子电池中的应用。该方法按照步骤:将荔枝木进行机锯处理得到尺寸为1~50cm3的荔枝木块,将小荔枝木块用去离子水洗涤,随后在70℃下干燥24h,得到预处理的荔枝木块;将所得荔枝木块在惰性气体氛围下进行一步阶梯碳化,待样品冷却后转移到酸性溶液中,搅拌,洗涤、过滤至中性,干燥、研磨后过筛网,得到钠离子电池用荔枝木基高性能硬碳负极材料。本发明制备方法简单,可实现废物利用,节能环保,成本较低,采用荔枝木为原料,成分单一,产品结构可控。所组装的钠离子电池表现出优异的库伦效率和电化学性能。
-
公开(公告)号:CN117865122A
公开(公告)日:2024-04-12
申请号:CN202410138680.7
申请日:2024-01-31
Applicant: 华南农业大学
IPC: C01B32/05 , H01M4/587 , H01M10/054
Abstract: 本发明属于电极材料技术领域,公开了一种兼具高质量容量和高体积容量的木头基硬碳负极材料及其制备方法和应用。该方法包括以下步骤:选取0.8~1.5g cm‑3的高密度木头并对其进行剪切,经过软化处理后进行热压,使前驱体致密化,然后置于惰性气氛中进行阶梯碳化煅烧,得到兼具高质量容量和高体积容量的木头基硬碳负极材料。本发明方法可以使所得硬碳负极材料具备高密度,能在保持质量容量的情况下提升体积容量,且所述方法制备过程简单,节能环保,适用性十分广泛,产品结构可控。所组装的钠离子电池表现出优异的质量和体积性能。
-
公开(公告)号:CN114767573A
公开(公告)日:2022-07-22
申请号:CN202210224494.6
申请日:2022-03-07
Applicant: 华南农业大学 , 广东碳紫科技有限公司
Abstract: 本发明涉及新材料技术领域,特别是涉及一种碳聚合物点紫外吸收剂及其制备方法和应用,该碳聚合物点紫外吸收剂包括碳聚合物点,所述碳聚合物点由氨基酸类和聚乙烯亚胺类组成,所述氨基酸类与所述聚乙烯亚胺类的重量之比是5~15:3.5~5,该碳聚合物点紫外吸收剂能够吸收全200nm~400nm全波段的紫外线,具有毒性低和生物相容性好的优点;其制备方法能制备出毒性低、生物相容性好的碳聚合物点紫外吸收剂,该碳聚合物点紫外吸收剂适合大规模应用在化妆品中。
-
公开(公告)号:CN111116990B
公开(公告)日:2021-07-09
申请号:CN201911114182.4
申请日:2019-11-14
Applicant: 华南农业大学
IPC: C08K9/04 , C08K3/04 , C09C1/44 , C09C3/08 , C01B32/15 , C08F265/04 , C08F220/14
Abstract: 本发明属于材料领域,公开了一种紫外‑蓝光吸收剂及其制备方法和制成的紫外‑蓝光吸收材料。该紫外‑蓝光吸收剂具有如下式(Ⅰ)所示结构,其中R为‑OH或‑NH2。再将紫外‑蓝光吸收剂和甲基丙烯酸甲酯、聚甲基丙烯酸甲酯以及引发剂一起制备紫外‑蓝光吸收材料。利用紫外‑蓝光吸收剂中碳点的光学性质来很好地吸收外来光源中的高能量紫外‑蓝光。所得紫外‑蓝光吸收材料透过性好同时还能吸收有害的紫外光和蓝光。本发明的制备方法操作简单、对设备要求低且成本低,产品可应用于仪表盘、灯管、装饰玻璃、手机屏幕保护膜、眼镜片等。
-
公开(公告)号:CN111099573A
公开(公告)日:2020-05-05
申请号:CN201911166264.3
申请日:2019-11-25
Applicant: 华南农业大学
IPC: C01B32/05 , C01B32/914 , H01M10/0525 , B82Y30/00
Abstract: 本发明属于材料技术领域,公开了一种用于高倍率锂离子电池存储的碳化铁/氮掺杂中空碳微管及其制备方法和应用。该方法包括步骤:将油渣类衍生物置于盐酸溶液中搅拌混合;再置于反应釜中水热,用去离子水和乙醇洗涤水热产物,再干燥;然后再和钾源、铁源及氮源的物质进行混合,在氮气保护的管式炉中煅烧,随炉冷却至室温;最后用稀盐酸和去离子水洗涤活化样品,再干燥,得到碳化铁/氮掺杂中空碳微管。本发明方法制备工艺简单,条件温和,适合规模化工业生产;将块状油渣类衍生物可控制备为中空碳微管材料,且具备良好的电化学性能,具备高的倍率性能且在高负载量条件下表现出高的面容量。
-
公开(公告)号:CN108423678A
公开(公告)日:2018-08-21
申请号:CN201810341146.0
申请日:2018-04-17
Applicant: 华南农业大学
IPC: C01B32/348 , C01B32/324
Abstract: 本发明属于多孔碳材料的制备技术领域,具体涉及一种超高比表面积的多级多孔碳材料及其制备方法与应用。该方法将低灰分生物质和高灰分生物质混合,通过水热碳化得到前驱体,再将前驱体依次经过酸处理和碱活化,即可使所得碳材料兼具超高比表面积和多级孔洞结构的特点。其中,酸处理过程可将前驱体中的部分无机盐溶解,促进后续活化过程中KOH在前驱体中的内扩散,提高活化效率,增加碳材料的比表面积;而少量不酸溶的无机盐在活化过程中起到支撑碳框架的作用,使大孔结构得以保留,从而使碳材料形成多级的孔洞结构。由此制备的多孔碳材料比表面积高达2195~3557m2/g,孔容高达1.13~2.55cm3/g。将其用作超级电容的电极材料,在0.5~20A/g电流密度下可得到272~453F/g比电容。
-
公开(公告)号:CN104830325A
公开(公告)日:2015-08-12
申请号:CN201510200560.6
申请日:2015-04-23
Applicant: 华南农业大学
Abstract: 本发明公开了一种荧光碳量子点/SiO2/无机荧光粉三元复合温度传感材料的制备方法,属于复合功能材料领域。所述制备方法以无水柠檬酸、有机硅烷为原料合成硅烷功能化荧光碳量子点,采用溶胶-凝胶法,通过与正硅酸乙酯进行水解共缩聚反应,获得荧光碳量子点/SiO2/无机荧光粉三元复合材料。在100-440K的温度范围内,该复合材料的荧光碳量子点与荧光粉的荧光强度的比值与温度具有良好的线性关系,从而为对温度的传感探测提供了一种基于荧光热猝灭的途径。该类荧光碳量子点/SiO2/无机荧光粉三元复合温度传感材料具备稳定性强、响应快速、灵敏度高等明显优势,具有很好的应用前景。
-
-
-
-
-
-
-
-
-