-
公开(公告)号:CN102799057A
公开(公告)日:2012-11-28
申请号:CN201210278620.2
申请日:2012-08-07
Applicant: 华中科技大学
IPC: G03B21/20 , F21V13/00 , F21V23/00 , F21Y101/02
Abstract: 本发明公开了一种采用固体绿激光和红、蓝光LED的高亮度混合白光源,包括金属外壳、光路部分、耦合发光组件部分、混合白光源出光透镜、以及嵌入式电源箱,光路部分设置于外壳内、并包括第一汇聚透镜、第二汇聚透镜、扩束整形透镜、红蓝光反射镜、绿光反射镜、激光退偏镜、红蓝光整形镜、绿光反射镜、红蓝光反射与绿光透射镜、第一扩束透镜、第二扩束透镜、混合白光源出光透镜,耦合发光组件部分包括红光LED、蓝光LED、固体绿光激光器,混合白光源出光透镜设置在外壳侧部,嵌入式电源箱平行设置于红光LED、第一汇聚透镜和第一扩束透镜、第二扩束透镜、混合白光源出光透镜之间。本发明具有长寿命、广色域、高亮度、无汞、能耗相对较低的特点。
-
公开(公告)号:CN101702021B
公开(公告)日:2011-10-26
申请号:CN200910272679.9
申请日:2009-11-06
Applicant: 华中科技大学
Abstract: 一种图谱一体化的时变对象光谱信息获取方法与装置,具体为:获取场景的当前帧图像,在其内提取包含时变对象的候选感兴趣区,将各候选感兴趣区分别与上一帧图像获取的各感兴趣区进行关联,关联成功的被确定为感兴趣区,并将其标识赋值为与其关联成功的上一帧图像感兴趣区的标识,最后获取当前帧图像各感兴趣区的光谱数据。本发明还设计了实现上述方法的装置,包括主控单元、成像传感器、光谱传感器、红外分光镜头、跟踪反射镜和跟踪扫描转台。本发明提出了宽谱成像和非成像光谱获取相结合的数据采集方法,与常规对整个场景所有区域采集光谱数据的方法相比,反应速度快,成本低,适合时变对象光谱数据的智能化采集,提高了采集光谱数据的效费比。
-
公开(公告)号:CN113835273B
公开(公告)日:2024-12-27
申请号:CN202111279773.4
申请日:2021-10-29
Applicant: 华中科技大学
IPC: G02F1/1343 , G02F1/1337 , G02F1/133 , G02F1/13
Abstract: 本发明公开了一种液晶微光学结构以及液晶基电调光场成像探测芯片,属于光学成像探测领域,液晶微光学结构包括液晶材料层以及分别设置在其两侧的图案化电极层和公共电极层;图案化电极层由导电膜构成,导电膜中设置有阵列分布的电极微孔,不同孔径的电极微孔交替排列,相同孔径的电极微孔周期排列;当图案化电极层和公共电极层间施加的信号电压的均方幅值高于均方幅值阈值时,不同孔径电极微孔下液晶材料层中的液晶分子呈不同空间排布形态,以在液晶材料层中形成与周期交替阵列分布对应的梯度折射率分布,使得液晶微光学结构在同一时刻具有多个焦距。多焦距可二次扩展景深范围,从而对视场中更广阔深度范围内的物体进行清晰成像。
-
公开(公告)号:CN112216762B
公开(公告)日:2024-08-27
申请号:CN202011155888.8
申请日:2020-10-26
Applicant: 华中科技大学
IPC: H01L31/115 , H01L31/0236 , H01L31/0216 , H01L31/18 , H01Q15/00 , H01Q15/10
Abstract: 本发明公开了一种基于超表面光学天线的太赫兹信号探测器及其制备方法,包括:衬底、掺杂层、二氧化硅层、超表面光学天线层、欧姆电极、肖特基电极和普通电极;其中,超表面光学天线层宽度为2~10mm,包括微米基元以及多个平面金属纳尖单元;微米基元为微米结构,形状为多边形;金属纳尖单元分布在微米基元各个边的内侧或外侧,对于入射的太赫兹信号具有局域表面等离激元特性。如此,由于纳尖单元对入射的太赫兹信号具有极强的局域表面等离激元感应能力,一旦与对应的太赫兹信号产生局域表面等离激元振荡,能够在极短时间内产生极强的响应信号;同时,本发明采用微纳结构,在满足较好探测性能的前提下,大大减小了太赫兹信号探测器的成本。
-
公开(公告)号:CN116295823A
公开(公告)日:2023-06-23
申请号:CN202310264069.4
申请日:2023-03-02
Applicant: 华中科技大学
Abstract: 本发明公开了一种基于纳尖结构的红外探测器,包括摄像头测试盒和镜头支架,还包括成像物镜、纳尖组合和光敏阵列,光敏阵列由多个光敏元组成;纳尖组合包括基片以及纳尖阵列,纳尖阵列包括多个纳尖结构,每个纳尖结构均包括尖型结构以及金属膜层,任意相邻的两个纳尖结构的金属膜层通过导电线实现电连接,位于纳尖阵列边缘的一排纳尖结构的每个金属膜层上均连接有引出导线;每个光敏元对应一个子纳尖阵;每个纳尖结构的尖端均指向光敏元;纳尖阵列和光敏阵列产生近场耦合。本发明具有成像光波收集效能高,通过纳尖电子强积聚实现入射光放大,显著提高常规可见光探测阵列的光电灵敏度,可实现弱辐射目标的实时原位高灵敏度探测的特点。
-
公开(公告)号:CN114019730A
公开(公告)日:2022-02-08
申请号:CN202111280447.5
申请日:2021-10-29
Applicant: 华中科技大学
IPC: G02F1/1343 , G02F1/1337 , G02F1/1333
Abstract: 本发明公开了一种双模一体化液晶微透镜阵列,包括上极板、下极板以、液晶和间隔子组,上极板包括第一基片、电极图案和第一PI膜,电极图案包括第一电极和第二电极,第一电极为微孔电极,第一电极包括第一导电层和微孔,第二电极包括中心导电层、第二导电层、多根导电引出线和多根导电连接线,每个中心导电层分别位于一个微孔内。本发明的上极板采用单层板,当电压加载于上极板的第一电极和下极板的ITO膜之间时,液晶微透镜阵列工作于凸透镜状态,当电压加载于上极板的第二电极和下极板的ITO膜之间时,液晶微透镜阵列工作于凹透镜状态,实现了结构上的简化。同时上极板、下极板均为单层板,可增加光的透过率,增加光束能量利用率。
-
公开(公告)号:CN112216763A
公开(公告)日:2021-01-12
申请号:CN202011155904.3
申请日:2020-10-26
Applicant: 华中科技大学
IPC: H01L31/115 , H01L31/0236 , H01L31/0216 , H01L31/18 , H01Q15/00 , H01Q15/10
Abstract: 本发明公开了一种基于超表面光学天线的太赫兹射频信号探测器及制备方法,探测器包括:衬底、掺杂层、二氧化硅层、超表面光学天线层、欧姆电极、肖特基电极和普通电极;超表面光学天线层宽度为2~100mm,包括分别用于探测射频S波段、C波段或X波段信号的第一金属层和探测太赫兹信号的第二金属层,由于第一金属层和第二金属层分别对射频和太赫兹信号具有极强的局域表面等离激元感应能力,一旦与对应的信号产生局域表面等离激元振荡,其响应速度属于超高速响应,能够在极短时间内产生极强的响应信号,使得探测器能够更好地分辨太赫兹射频波段的电磁信号。此外,由于超表面光学天线的制作采用纳米工艺,使得太赫兹射频信号探测器体积很小、重量很轻。
-
公开(公告)号:CN112216761A
公开(公告)日:2021-01-12
申请号:CN202011155858.7
申请日:2020-10-26
Applicant: 华中科技大学
IPC: H01L31/115 , H01L31/0236 , H01L31/0216 , H01L31/18 , H01Q15/00 , H01Q15/10
Abstract: 本发明公开了一种基于超表面光学天线的红外太赫兹信号探测器及制备方法,探测器包括:衬底、掺杂层、二氧化硅层、超表面光学天线层、欧姆电极、肖特基电极和普通电极;超表面光学天线层宽度为0.5~10mm,并且包括分别用于探测红外信号的第一金属层和探测太赫兹信号的第二金属层,由于第一金属层和第二金属层分别对入射的红外信号和太赫兹信号波段电磁信号具有极强的局域表面等离激元感应能力,一旦与对应的信号产生局域表面等离激元振荡,其响应速度属于超高速响应,能够在极短时间内产生极强的响应信号,使得探测器能够更好地分辨红外太赫兹波段的电磁信号。此外,由于超表面光学天线的制作采用纳米工艺,使得红外太赫兹信号探测器体积很小、重量很轻。
-
公开(公告)号:CN105549232B
公开(公告)日:2019-01-04
申请号:CN201510901830.6
申请日:2015-12-08
Applicant: 华中科技大学
Abstract: 本发明公开了一种双模一体化电控液晶光开关阵列。阵列化排布的液晶微光学结构在双路时序电信号驱控下呈现为电控液晶聚光微透镜阵列或电控液晶散光微透镜阵列,源于同一液晶微光学结构的每单元液晶聚光微透镜与每单元液晶散光微透镜有相同光轴;在聚光模式下,在一组相互匹配的双路电信号驱控下形成的液晶聚光微透镜对入射光波实施可调焦聚光操作,构成光开关的开启态;在散光模式下,在另一组相互匹配的双路电信号驱控下形成的液晶散光微透镜对入射光束实施可控光发散程度的散光操作。本发明通过加载相应的双路电信号,完成纤光束间的光波通断操作,开关的驱控方式灵活,适用于波谱范围宽、光强变动范围大的光纤/光缆系统。
-
公开(公告)号:CN105467628B
公开(公告)日:2018-12-28
申请号:CN201510897626.1
申请日:2015-12-07
Applicant: 华中科技大学
IPC: G02F1/13 , G02F1/133 , G02F1/1333
Abstract: 本发明公开了一种混合集成电控液晶光开关阵列,包括:被混合集成的电控液晶聚光微透镜阵列和电控液晶散光微透镜阵列,每单元液晶聚光微透镜与每单元液晶散光微透镜的光轴重合;在加电态下,聚光微透镜在不同均方幅度的电驱控信号作用下实施光束的可调焦聚光操作,散光微透镜在不同均方幅度的电驱控信号作用下实施光束的可控发散程度散光操作;在断电态下,液晶聚光微透镜与散光微透镜被转换为仅延迟光波相位的液晶相移板;液晶聚光微透镜与散光微透镜被断电后形成的液晶相移板构成光开关的开启态。本发明的混合集成电控液晶光开关阵列可完成电控光束通断操作,适用于波谱范围宽、波束强度变化范围大的光纤或光缆系统。
-
-
-
-
-
-
-
-
-