-
公开(公告)号:CN116284765A
公开(公告)日:2023-06-23
申请号:CN202310317767.6
申请日:2023-03-28
Applicant: 北京理工大学重庆创新中心
Abstract: 本发明公开了一种二氧化锡/聚苯胺复合纳米一氧化碳传感器材料及制备方法,包括以下步骤:A、向锡盐溶液中加入NaOH溶液,沉淀溶液转移至高压釜进行水热并冷却至室温,清洗干燥后,得到锡氧化物;B、将苯胺单体与锡氧化物溶解于酸溶液中,然后加入溶有过硫酸铵的酸溶液,在冰浴条件下反应,离心得到沉淀,得到复合物;C、将复合物置于瓷舟中,用管式炉活化处理,冷却后即得。本发明的传感器材料规避了传统金属半导体氧化物传感器材料工作温度高、功耗高、成本高的问题,同时通过构建MOF框架结构以及合成聚苯胺,提高了传感器的耐腐蚀性能,其能够适应锂离子电池的内部环境。
-
公开(公告)号:CN115763850A
公开(公告)日:2023-03-07
申请号:CN202211624396.8
申请日:2022-12-16
Applicant: 北京理工大学重庆创新中心
Abstract: 本发明涉及电催化材料技术领域,具体涉及一种碳基氧还原催化剂的制备方法及其应用,本发明所提供的一种碳基氧还原催化剂的制备方法主要包括步骤:S1:将乙酰丙酮金属通过气相浸渍法附着在碳基载体表面,得到附着有乙酰丙酮金属的碳基材料;S2:使用氨水通过液相置换法对附着有乙酰丙酮金属的碳基材料置换配体,然后干燥,以得到附着有氨基金属配位化合物的碳基材料;S3:通过对附着有氨基配位化合物的碳基材料进行高温煅烧以得到碳基氧还原催化剂。上述制备方法工艺简单、制备成本更低、且催化活性更好。
-
公开(公告)号:CN114824462A
公开(公告)日:2022-07-29
申请号:CN202210396664.9
申请日:2022-04-15
Applicant: 北京理工大学 , 北京理工大学重庆创新中心
IPC: H01M10/0565 , H01M10/0525
Abstract: 本发明涉及一种氟化凝胶电解质及其制备方法,属于凝胶聚合物电解质技术领域。所述电解质由聚偏氟乙烯‑六氟丙烯膜和电解液组成;所述电解液由锂盐和有机溶剂组成;所述有机溶剂由有机溶剂I和有机溶剂II按照体积比为(1~3):1组成;所述有机溶剂I为碳酸二乙酯或碳酸甲乙酯;所述有机溶剂II为氟代碳酸乙烯酯。所述电解质由如下方法制得:将锂盐完全溶解于有机溶剂中,得到电解液;再将聚偏氟乙烯‑六氟丙烯膜在所述电解液中浸泡12h~36h,得到所述氟化凝胶电解质。所述电解质具有高电化学窗口、高离子电导率,可实现室温下与高镍正极的匹配以及稳定的电化学循环;所述方法简单,成本低,易于规模化制备。
-
公开(公告)号:CN114566625A
公开(公告)日:2022-05-31
申请号:CN202210204581.5
申请日:2022-03-02
Applicant: 重庆理英新能源科技有限公司 , 北京理工大学重庆创新中心
Abstract: 本发明公开了一种具有低压降性能的富锂锰基正极材料及其制备方法和应用,所述富锂锰基正极材料的化学式为Li1.2Mn0.54NixCo(0.26-x)O2,0.13≤x≤0.26,其还包括包覆层,包覆层为Li3NbO4,包覆量为富锂锰基正极材料质量的1-5%。本发明通过调节镍元素和钴元素所占比例,在特定比例范围下,采用溶胶凝胶法制备得出了在抑制电压衰减方面表现优异的正极材料,该正极材料在2.0V-4.8V的电压区间、0.1C充放电流的测试条件下,循环50周后平均电压衰减最佳表现为120-130mV,具备优异的低压降性能,同时,通过Li3NbO4包覆富锂锰基正极材料的低压降性能更优,促进了富锂锰基正极材料的商业化进程。
-
公开(公告)号:CN119902088A
公开(公告)日:2025-04-29
申请号:CN202510222668.9
申请日:2025-02-27
Applicant: 北京理工大学重庆创新中心
IPC: G01R31/367 , G01R31/392
Abstract: 本发明公开了基于LSTM和注意力机制的电池容量预测方法及系统,方法包括:获取待检测电池的容量衰减数据;构建电池容量预测模型;将待检测电池的容量衰减曲线输入电池容量预测模型中进行预测,获得预测结果;其中,电池容量预测模型为引入注意力机制的长短期记忆神经网络。通过结合长短期记忆网络和注意力机制,本发明能够更准确地捕捉电池放电容量数据中的时间依赖性,从而提高电池寿命预测的精度。
-
公开(公告)号:CN116409811B
公开(公告)日:2024-08-06
申请号:CN202310369954.9
申请日:2023-04-07
Applicant: 北京理工大学 , 北京理工大学重庆创新中心
IPC: C01G9/02 , C01G15/00 , C01B32/184 , G01N27/407
Abstract: 本发明公开了一种rGO‑ZnO‑In2O3复合材料及制备方法、还原性气体传感器及制备方法和应用,包括以下步骤:A、将锌盐、铟盐以及PEG溶于去离子水中,加入石墨烯分散液,得到前驱体溶液,调整前驱体溶液的pH值;B、将前驱体溶液置于反应釜中,水热反应后冷却,离心、沉淀、洗涤、干燥得到反应产物;C、加热将石墨烯还原为还原氧化石墨烯,再煅烧即得。本发明采用一步水热法制备得到rGO‑ZnO‑In2O3复合材料,具有工艺过程简单、成本低廉的特点,制备得到的气体传感器具有灵敏度高、响应速度迅速、低功耗、耐电解液腐蚀及侵扰、性能稳定性好等特点,克服了传统气体传感器应用于锂电池气体监测时所存在的不足。
-
公开(公告)号:CN117766778A
公开(公告)日:2024-03-26
申请号:CN202311842488.8
申请日:2023-12-29
Applicant: 北京理工大学重庆创新中心
IPC: H01M4/70 , H01M4/66 , B22F10/10 , B22F10/64 , B22F1/107 , B22F1/05 , B22F1/054 , B33Y10/00 , B33Y40/20 , B33Y70/10 , B33Y80/00 , B82Y30/00 , B82Y40/00 , B29C64/314 , B29C64/106 , B29B13/10 , B33Y40/10
Abstract: 本发明公开了一种3D打印集流体及其制备方法和应用,包括如下步骤:A、以导电材料为基体,向基体中加入溶剂、粘结剂、分散剂以及流动助剂,混合配置成浆料1;B、将浆料1置于真空球磨机中球磨,球磨后得到浆料2;C、将浆料2置于3D打印机料筒中,在基板上打印得到集流体前驱体;D、对集流体前驱体进行真空干燥,然后热处理,即得。本发明利用3D打印墨水直写技术制备金属或非金属集流体,不仅可以打印异型结构集流体和超薄集流体,而且能够精细化控制集流体的三维结构,增大活性材料与集流体接触面积,使集流体与活性材料形成极其完善的导电网络,减缓锂离子迁移对集流体造成的压缩应力,产品一致性较高,更适合商品化应用。
-
公开(公告)号:CN114325509B
公开(公告)日:2023-11-07
申请号:CN202111652246.3
申请日:2021-12-30
Applicant: 北京理工大学重庆创新中心 , 北京理工大学
IPC: G01R33/02 , G01R33/028 , H01M50/40 , H01M50/403
Abstract: 本发明公开了一种用于检测锂离子电池枝晶生长的智能隔膜及检测方法,所述智能隔膜用于锂离子电池中,该智能隔膜包括隔膜基体,隔膜基体至少一面负载磁性金属的非磁性化合物,磁性金属的非磁性化合物通过磁控溅射的方法覆盖在隔膜基体上,以形成智能隔膜。本发明利用智能隔膜来判断锂离子电池的锂枝晶生长情况,不仅时效性好,在锂离子电池短路前监测到锂枝晶,而且可以在不破坏锂离子电池的情况下准确检测出生长的锂枝晶,不影响锂离子电池正常工作的能力。本发明克服了传统锂枝晶检测方法所存在的操作难度大、准确性差、检测效率低等问题。
-
公开(公告)号:CN114566625B
公开(公告)日:2023-06-20
申请号:CN202210204581.5
申请日:2022-03-02
Applicant: 重庆理英新能源科技有限公司 , 北京理工大学重庆创新中心
Abstract: 本发明公开了一种具有低压降性能的富锂锰基正极材料及其制备方法和应用,所述富锂锰基正极材料的化学式为Li1.2Mn0.54NixCo(0.26-x)O2,0.13≤x≤0.26,其还包括包覆层,包覆层为Li3NbO4,包覆量为富锂锰基正极材料质量的1-5%。本发明通过调节镍元素和钴元素所占比例,在特定比例范围下,采用溶胶凝胶法制备得出了在抑制电压衰减方面表现优异的正极材料,该正极材料在2.0V-4.8V的电压区间、0.1C充放电流的测试条件下,循环50周后平均电压衰减最佳表现为120-130mV,具备优异的低压降性能,同时,通过Li3NbO4包覆富锂锰基正极材料的低压降性能更优,促进了富锂锰基正极材料的商业化进程。
-
公开(公告)号:CN114865096A
公开(公告)日:2022-08-05
申请号:CN202210568486.3
申请日:2022-05-24
Applicant: 北京理工大学重庆创新中心
IPC: H01M10/058 , H01M10/0525 , B29C64/124 , B33Y10/00
Abstract: 本发明公开了一种利用3D打印制备固态锂离子电池的方法及得到的锂离子电池,包括以下步骤:S1、制备正极墨水、负极墨水和复合电解质墨水;S2、将正极墨水置于3D打印机针筒中,在玻璃基板上逐层打印并同时进行光固化,得到3D打印正极;S3、将复合电解质墨水置于3D打印机针筒中,在正极表面逐层打印并同时进行光固化,得到电解质;S4、将负极墨水置于3D打印机针筒中,在电解质表面逐层打印并同时进行光固化;S5、外层打印封装即得。本发明的方法结合了墨水直写成型和光固化成型的优点,可以实现3D打印一体化连续制备固态电池,提高了固态电解质与电极间紧密结合度,无需传统光固化工艺脱脂且无需大量添加剂,简化了配方和成型流程,整个打印制备过程避免了传统电池制备过程中所需的集流体、粘结剂、干燥、极片压实、组装、热塑封等过程,极大简化了制备工艺。
-
-
-
-
-
-
-
-
-