一种快速的脑电信号中眼电伪迹自动识别和去除的方法

    公开(公告)号:CN102697493B

    公开(公告)日:2013-10-16

    申请号:CN201210135556.2

    申请日:2012-05-03

    Abstract: 本发明提出了一种快速的脑电信号中眼电伪迹自动识别和去除的方法,属于生物信息技术领域,主要应用于脑电信号采集与预处理的过程中。具体包括:将采集得到的多导脑电信号和眼电信号进行离散小波变换,获取多尺度的小波系数;将串接小波系数作为独立分量分析的输入,利用基于负熵判据的FastICA算法实现独立成分的快速获取;通过夹角余弦法识别出眼电伪迹后,将该独立成分置零,并经过ICA逆变换将其余成分投影返回到原信号各个电极;最后通过反演小波变换得到去除眼电伪迹的脑电信号。本发明解决了ICA方法应用于含噪脑电信号中分离效果差,收敛速度慢的问题,实现了从脑电中快速自动去除眼电伪迹的功能。

    基于改进概率主题模型的地点图像识别方法

    公开(公告)号:CN102609719B

    公开(公告)日:2013-07-31

    申请号:CN201210017692.1

    申请日:2012-01-19

    Abstract: 一种基于改进概率主题模型的地点图像识别方法,属于图像识别技术领域。目的在于更好地解决地点图像识别中由于不同角度、光照,以及人物和物体的高度动态变化导致的不确定性问题。包括以下步骤:图像获取步骤;图像预处理步骤;特征提取步骤,采用SIFT算法对图像进行特征提取;特征聚类步骤,将所有特征聚类,得到若干聚类中心;特征分配步骤,将每幅图像的特征在聚类中心上投票,得出对应每个聚类中心的频数向量;潜在主题建模步骤,采用改进的概率主题模型学习图像的潜在主题分布;采用分类器识别未知地点图像。本发明在LDA模型中加入量化函数,通过改进LDA模型学习图像的潜在主题,在保证实时性的前提下,可有效提高识别性能。

    一种基于小训练样本的脑电信号特征提取方法

    公开(公告)号:CN102306303A

    公开(公告)日:2012-01-04

    申请号:CN201110274365.X

    申请日:2011-09-16

    Abstract: 本发明涉及脑-机接口(Brain-ComputerInterface,BCI)装置中想象动作电位的特征提取方法,具体讲的是正则化方法与CSSD算法相结合的特征提取方法。本发明引入正则化参数,在正则化参数的作用下将目标实验者训练数据的协方差矩阵和辅助实验者训练数据的协方差矩阵相结合构成正则化协方差矩阵,然后构造正则化空间滤波器。然后利用正则化空间滤波器对目标实验者的测试数据进行特征分析,在处理小样本问题时,解决了CSSD算法中特征值不稳定和分类准确率等问题。

    基于小波变换和BP神经网络的脑电特征提取方法

    公开(公告)号:CN101221554A

    公开(公告)日:2008-07-16

    申请号:CN200810056838.7

    申请日:2008-01-25

    Abstract: 本发明是脑机接口系统想象动作脑电信号特征的提取方法,特别是基于小波变换和BP神经网络的脑电特征提取方法。本发明是以想象动作思维引起的能量变化作为区分左右手想象运动的特征,按照平均功率公式分别计算出想象左右手动作从C3、C4通道获取的脑电信号(以下简称左右手C3、C4)在0~9s内所有采样点对应的平均功率。设置时间窗,对加窗段的数据进行离散二进小波变换,选取第六尺度上的逼近信号a6,作为信号特征;以BP神经网络作为分类器进行分类。本文采用离散小波变换和BP神经网络提取想象运动电位的方法有助于提高想象动作电位的信噪比和识别正确率;另外,小波变换是一种线性变换,计算速度快,适合于在线分析。

    一种基于注意力机制的行人轨迹预测方法

    公开(公告)号:CN113160269B

    公开(公告)日:2024-03-12

    申请号:CN202110176024.2

    申请日:2021-02-09

    Abstract: 本发明涉及一种基于注意力的行人轨迹预测方法,用于更准确快速地预测行人的未来轨迹。具体包括三个模块,个体注意力编码模块,用于计算行人自身历史轨迹中隐藏向量的相似性并输出个体注意力特征矩阵,以获取在运动过程中行人自身的主要影响因素;社会注意力池化模块,用于接收个体注意力编码模块的计算结果,即个体注意力特征矩阵,计算场景中所有行人的历史轨迹中隐藏向量的相似性并输出综合运动特征矩阵,以获取在运动过程中行人之间的相互影响关系;门控循环单元解码模块,用于接收社会注意力池化模块的计算结果,即综合运动特征矩阵,利用门控循环单元计算并输出行人的未来轨迹坐标;本方法有效地提高了预测精度和速度。

    基于RBSAGAN的数据增广方法
    36.
    发明授权

    公开(公告)号:CN112668424B

    公开(公告)日:2024-02-06

    申请号:CN202011509929.9

    申请日:2020-12-19

    Abstract: 本发明公开了一种基于RBSAGAN的脑电信号数据增广的方法,设计Up ResBlock与Down ResBlock网络结构,通过主干的两个1D卷积层与分支的一个1D卷积层提取不同尺度感受野下的特征,并分别采用1D反卷积层和平均池化层分别进行数据维度的扩大和缩小。基于Self‑Attention机制设计1D Self‑Attention网络。该网络结构无视各离散时刻数据之间的距离,能够通过并行计算各离散时刻数据之间的相似度直接获得全局的时序特征,适用于具有丰富时序信息的脑电信号。Down ResBlock与1D Self‑Attention等网络组成RBSAGAN的判别器,输出损失值对生成器以及判别器的参数进行更新,直至达到纳什平衡。生成器产生的新数据与原有数据构成增广数据集,输入1D CNN进行分类,以评估生成数据的质量。

    基于3D插值和3DCNN的运动想象任务分类方法

    公开(公告)号:CN115952440A

    公开(公告)日:2023-04-11

    申请号:CN202310010193.8

    申请日:2023-01-04

    Abstract: 本发明公开了基于3D插值和3DCNN的运动想象任务分类方法,首先,对运动想象脑电信号进行带通滤波处理;然后,利用快速傅里叶变换(FFT)对每个电极的EEG信号进行频域变换,并求取功率值;接着,将头皮电极的3D坐标投影到3D空间中,并使用3D插值算法对功率值进行插值,生成包含电极的3D真实空间位置信息的3D插值特征图像;最后,设计了一个3D卷积神经网络(3DCNN)来匹配3D插值特征图像的特点进行特征提取和分类。本发明体现了运动想象激活的深度信息,将电极的精确三维空间信息编码到3D插值成像图中,较好地匹配了3DCNN的空间卷积能力。

    一种基于通道选择的对抗消除弱监督目标检测方法

    公开(公告)号:CN110569901B

    公开(公告)日:2022-11-29

    申请号:CN201910838283.X

    申请日:2019-09-05

    Abstract: 本发明涉及一种基于特征通道选择的对抗消除弱监督目标检测方法,用于解决弱监督目标检测定位误差的问题。首先,以弱监督深度目标检测为底层框架,采用选择性搜索方法在训练集数据上生成候选框,并与训练集图像和对应的图像标签一起作为弱监督网络的输入;其次,以VGG16为基础网络构建特征提取网络模型,并对得到的特征图像用特征通道压缩的方式进行通道加权选择,激励有利于分类的图像特征层,而抑制对分类有干扰的特征层;然后,采用对抗消除方法得到能够表达图像目标的完整特征表达作为预测网络的输入;最后,根据多任务交叉熵损失来训练预测网络,实现目标检测。本发明不仅可以更加精确定位目标物体的位置,而且能够提高物体识别的精度。

    基于D-K分区的简化分布式偶极子模型建立与识别方法

    公开(公告)号:CN114631830A

    公开(公告)日:2022-06-17

    申请号:CN202210239817.9

    申请日:2022-03-12

    Abstract: 本发明公开了基于D‑K分区的简化分布式偶极子模型建立与识别方法,具体包括:首先,利用不同的带通滤波器对原始MI‑EEG进行滤波,以挑选与运动想象活动相关的最优频带;然后,对挑选出的每个子带进行脑电逆变换,将头皮EEG转换为脑皮层中的偶极子;接着,获得基于神经解剖学D‑K分区的中心偶极子,以构建简化分布式偶极子模型,将大脑皮层中心偶极子的活动视为神经动力学系统,构建4D数据表达;最后,将多频带数据表达进行融合并输入至设计好的n分支并行的nB3DCNN中,从时‑频‑空三个维度进行综合特征提取与识别。本发明体现了不同频带下,偶极子在3D空间中幅值随着时间的变化,利用少量中心偶极子反映了整个大脑皮质层由运动想象引起的神经电活动。

    一种基于人体特征分布的行人解析方法

    公开(公告)号:CN108564012B

    公开(公告)日:2022-03-08

    申请号:CN201810273078.9

    申请日:2018-03-29

    Abstract: 本发明涉及一种基于人体特征分布的行人解析方法,从人体特征分布的角度出发,提出了一种智能的融合人体特征分布模型和自监督结构敏感学习策略的行人解析方法。以自监督结构敏感学习方法为底层框架,首先,通过超像素分割的方法产生候选区域,对每个区域提取颜色和纹理特征建立表象模型,然后再利用高斯函数建立面积比例模型,最后通过将两个模型叠加得到总的人体特征分布模型。并将解析损失函数、关节结构损失函数和人体特征分布模型的特征分布损失函数相叠加的得到最终的损失函数。本发明利用自监督结构敏感学习方法使得生成的解析结果在语义上与人体的结构具有很强的一致性,更符合人体特征分布的特性,并且对遮挡,视角,复杂背景具有不变性。

Patent Agency Ranking