-
公开(公告)号:CN109301246A
公开(公告)日:2019-02-01
申请号:CN201811142962.5
申请日:2018-09-28
Applicant: 东北大学秦皇岛分校
IPC: H01M4/583 , H01M10/054
Abstract: 本发明涉及一种硫掺杂硬碳材料、其制备方法及其作为负极的钾离子电池,所述硬碳材料具有多孔结构,所述硫原子至少部分分布在所述硬碳材料的内部。所述硬碳材料的制备方法包括:(1)将高硫煤酸洗,然后浸渍于碱性溶液中,制得预产品;(2)在保护性气氛下,将预产品进行热处理,制得硬碳材料;(3)将硬碳材料进行酸溶液浸泡、洗涤、过滤和烘干过程。本发明以高硫煤为原料,制得的硬碳材料孔径大小可以满足钾离子嵌入/脱出要求,与此同时,硫元素原位自掺杂于材料的表面和碳基体中,赋予材料新的电化学活性及更理想的孔道结构。本发明制得的碳材料中硫元素分布更均匀、生产成本更低廉。
-
公开(公告)号:CN109190516A
公开(公告)日:2019-01-11
申请号:CN201810922085.7
申请日:2018-08-14
Applicant: 东北大学
Abstract: 本发明提供一种基于手掌边缘轮廓矢量化的静态手势识别方法。本发明方法,包括:对包含手势图像进行预处理得到手势区域,确定手势连通域质心与方向向量,进而确定手腕位置平行线,通过最小厚度的原则最终确定手腕位置并分割出手掌区域,针对分割出的手掌区域进行质心位置的修正,以修正后的质心作为参考点,对轮廓进行矢量化。该方法在手势发生旋转、平移、缩放时具有较高的鲁棒性,同时能够大幅度提示匹配速度以满足实际应用的需要。
-
公开(公告)号:CN108899538A
公开(公告)日:2018-11-27
申请号:CN201810795118.6
申请日:2018-07-19
Applicant: 东北大学秦皇岛分校
IPC: H01M4/505 , H01M4/525 , H01M10/054
Abstract: 本发明提供了一种三元钠离子电池正极材料、其制备方法以及钠离子电池。所述三元钠离子电池正极材料化学式为:Na0.67[Ni0.167Co0.167Mn0.67]1-xTixO2,其中,0<x<1,所述三元钠离子电池正极材料为球形颗粒,所述三元钠离子电池正极材料具有层状结构。所述制备方法包括:1)将含有二价镍盐、二价钴盐和二价锰盐的盐溶液与碱溶液混合,进行共沉淀反应,固液分离得到镍钴锰的碳酸盐;2)预烧镍钴锰的碳酸盐,得到三元镍钴锰氧化物;3)将三元镍钴锰氧化物、钠源和钛源混合,煅烧,得到所述三元钠离子电池正极材料。所述三元钠离子电池正极材料具有良好的循环稳定性以及放电电压平台。
-
公开(公告)号:CN108695512A
公开(公告)日:2018-10-23
申请号:CN201810613768.4
申请日:2018-06-14
Applicant: 东北大学秦皇岛分校
IPC: H01M4/52 , H01M10/0525
CPC classification number: H01M4/52 , H01M10/0525
Abstract: 本发明属于能源储能材料领域,涉及一种酸洗铁红作为负极材料的用途。所述酸洗铁红用作负极材料,或者所述酸铁铁红经改性后用作负极材料。本发明的方法以酸洗铁红为原料制备Fe2O3负极材料,降低了锂离子电池的生产成本,同时延伸酸洗铁红的应用链,提高酸洗铁红的资源利用率,减少环境污染。尤其是通过本发明所述改性的方法合成的改性的酸洗铁红用作负极材料具有优异的电化学性能,能够缓解目前的能源危机,为规模化生产带来巨大的经济效益和环保社会效益。
-
公开(公告)号:CN108695498A
公开(公告)日:2018-10-23
申请号:CN201810465818.9
申请日:2018-05-16
Applicant: 东北大学秦皇岛分校
IPC: H01M4/36 , H01M4/38 , H01M4/62 , H01M10/0525 , H01M10/054
CPC classification number: H01M4/362 , H01M4/387 , H01M4/62 , H01M4/625 , H01M4/628 , H01M10/0525 , H01M10/054
Abstract: 本发明公开了一种多孔碳内嵌锡基合金的电池负极材料及其制备方法,该复合材料由三维网状多孔碳包覆的纳米级锡基合金均匀镶嵌在三维网状碳结构上构成,其制备过程包括:采用NaCl作为模板,将其与碳源、锡源以及其它金属盐溶解,混合均匀,随后冷冻干燥以保持NaCl立方体结构,研磨后在管式炉中惰性或还原性气氛围中一定温度下进行热处理,洗涤除去NaCl模板,烘干后得到三维多孔网状碳内嵌锡基合金的复合材料。制备出的材料用于锂离子电池和钠离子电池负极,具有容量高,循环性能好且倍率性能优异等特点。而且制备工艺简单,对环境友好,性能可控,具有普适性和可放大性。
-
公开(公告)号:CN108550840A
公开(公告)日:2018-09-18
申请号:CN201810465819.3
申请日:2018-05-16
Applicant: 东北大学秦皇岛分校
Abstract: 三维网状碳内嵌锑基合金钾离子电池负极材料,包括三维网状结构的薄碳层和锑基合金颗粒,该锑基合金颗粒均匀内嵌在薄碳层之中;该材料的制备方法为:1)将NaCl、形成锑基合金的离子化合物及碳源溶于水中,搅拌3-12h制成混合溶液;2)将混合溶液冷冻、干燥去除水分以保持NaCl的立方结构;3)将上述物放入坩埚,在还原氛围下热处理,使碳源碳化为碳单质,金属离子被还原成金属单质,金属单质聚集形成合金;4)用去离子水洗涤除去NaCl,再烘干得产物,该材料容量高,循环性能好,倍率性能优良,具有稳定的充放电平台,解决了金属锑负极材料存在的体积膨胀率大,循环和倍率性能不佳的问题。
-
公开(公告)号:CN107706402A
公开(公告)日:2018-02-16
申请号:CN201711138248.4
申请日:2017-11-16
Applicant: 东北大学秦皇岛分校
IPC: H01M4/36
Abstract: 本发明提供了一种金属元素共掺杂的磷酸锰锂/碳复合正极材料及其制备方法。所述复合正极材料由磷酸锰锂和位于所述磷酸锰锂内部的碳层构成,其中所述磷酸锰锂中的锂、锰位被金属元素共掺杂,所述金属元素为非稀土金属元素。所述复合正极材料的制备方法包括:1)制备第一碳层包覆的锂位掺杂磷酸锂;2)将步骤1)制备的第一碳层包覆的锂位掺杂磷酸锂制备成金属元素共掺杂的磷酸锰锂/碳复合正极材料,第一碳层位于金属元素共掺杂的磷酸锰锂/碳复合正极材料的内部。本发明提供的正极材料电化学性能好,且粒径小,颗粒大小均匀,比表面积大,结晶性高;本发明的方法绿色环保、过程易控、成本低。
-
公开(公告)号:CN107482215A
公开(公告)日:2017-12-15
申请号:CN201710650719.3
申请日:2017-08-02
Applicant: 东北大学秦皇岛分校
Abstract: 本发明涉及一种三维多孔磷酸锰锂、其制备方法及用途,属于新能源材料制备技术领域。本发明的方法为:以饱和盐溶液为模板,利用冷冻干燥法制备磷酸锰锂。更具体的方法包括:1)向饱和盐溶液中加入锂源、磷酸铵盐和/或磷酸、锰源及可选的碳源;2)采用得到的混合溶液进行冷冻干燥;(3)对得到的粉状固体在保护性气氛下进行热处理、清洗,得到磷酸锰锂。本发明的方法新颖,为磷酸锰锂的制备提供了新思路,相比于已有制备磷酸锰锂正极材料的方法,具有工艺简单、绿色环保,原料廉价等优点,且得到的磷酸锰锂产品具有三维多孔结构,比表面积大,以其作为正极材料应用于电池中,能够提高电子电导率,提升正极材料的电化学性能。
-
公开(公告)号:CN107134577A
公开(公告)日:2017-09-05
申请号:CN201710322130.0
申请日:2017-05-09
Applicant: 东北大学
IPC: H01M4/58 , H01M4/04 , H01M10/0525 , B82Y40/00
CPC classification number: H01M4/5825 , B82Y40/00 , H01M4/0454 , H01M10/0525
Abstract: 本发明涉及一种纳米级磷酸锰锂的制备方法。该制备方法包括:S1、制备三氧化二锰饱和的氯化胆碱离子液体;S2、制备铝网基磷酸锂极片;S3、以所述铝网基磷酸锂极片为阴极,在三氧化二锰饱和的氯化胆碱离子液体中进行电沉积,在阴极上生成纳米级磷酸锰锂。本发明中,采用氯化胆碱离子液体制备出的纳米级磷酸锰锂粒度更加均匀,并且制备过程绿色环保、工艺简单、过程易控。
-
公开(公告)号:CN119886626A
公开(公告)日:2025-04-25
申请号:CN202411778693.7
申请日:2024-12-05
Applicant: 东北大学
IPC: G06Q10/0631 , G06Q10/0633 , G06Q10/10 , G06Q30/0601 , G06Q50/04
Abstract: 本发明提供一种基于多智能体的工业物联网生产链和产业链协同方法,涉及工业互联网技术领域,在外部市场的弹性供应和动态需求、企业内部动态生产状况(设备能力、工艺参数)、外部资源消耗、碳排放量等约束条件下,以提高包含产品产量、质量、能耗、排放、成本等指标在内的生产全流程综合评价指标为目标,采用虚拟制造流程实现基于虚拟仿真的前馈决策校正,通过工业生产中大规模感知数据进行工况识别与反馈,实现自优化决策和人机交互动态优化决策,从而建立基于多智能体的产业链和生产链协同机制。
-
-
-
-
-
-
-
-
-