-
公开(公告)号:CN119478794B
公开(公告)日:2025-04-29
申请号:CN202510051849.X
申请日:2025-01-14
Applicant: 天津理工大学 , 山东省人工智能研究院 , 山东省计算中心(国家超级计算济南中心) , 山东大学 , 浙江大华技术股份有限公司 , 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) , 合肥工业大学
IPC: G06V20/40 , G06V10/80 , G06T17/00 , G06F18/213 , G06F18/25 , G06F16/783
Abstract: 本发明涉及计算机视觉和自然语言处理技术领域,尤其涉及一种基于渐进式交互和多模态对齐的视频片段句子定位算法。步骤如下:首先将与视频相关的所有查询句子根据该查询句子对应的视频片段在视频中的顺序进行排序后与视频特征和在特征维度进行拼接,再将其经过多模态对齐模块提取视频与查询句子特征各自的模态内信息以及两个模态之间的信息,随后根据与查询句子交互后的视频特征生成多个候选片段,通过分组候选片段交互模块学习候选片段之间的关系,然后通过度量学习缩小对应的候选片段特征与查询句子特征对的差异,最后将所有候选片段特征与单个查询句子特征计算匹配分数,分数高的作为预测结果。本发明可以精准地对视频片段进行定位。
-
公开(公告)号:CN119625792A
公开(公告)日:2025-03-14
申请号:CN202510151987.5
申请日:2025-02-12
Applicant: 齐鲁工业大学(山东省科学院) , 山东省人工智能研究院 , 山东省计算中心(国家超级计算济南中心) , 山东大学 , 浙江大华技术股份有限公司 , 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) , 合肥工业大学
IPC: G06V40/10 , G06V10/82 , G06V10/764 , G06V10/74 , G06N3/0464
Abstract: 本发明涉及一种基于强化共性特征的换衣行人重识别方法及系统,属于计算机视觉技术领域。其包括以下步骤:获取待检索的行人图像数据集,并在数据集中确定原始图像和与原始图像相同身份标签的图像;数据集中图像经过衣服混合与匹配模块、人体身份增强流模块以及ResNet50模型进行特征提取,然后经过共性特征提取模块生成显著图,最后经过分类器得到分类结果;通过损失函数对前述过程进行迭代优化,得到训练好的ResNet50模型;将待检测图像输入到训练好的模型中,得到检索特征;将检索特征与检索库中的行人图像特征进行相似度匹配,得到行人重识别结果。本发明能够提取适应换衣场景下的更有鲁棒性和判别性的特征。
-
公开(公告)号:CN119379524A
公开(公告)日:2025-01-28
申请号:CN202411918332.8
申请日:2024-12-25
Applicant: 齐鲁工业大学(山东省科学院) , 山东省人工智能研究院 , 山东省计算中心(国家超级计算济南中心) , 山东大学 , 浙江大华技术股份有限公司 , 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) , 合肥工业大学
IPC: G06T1/00 , G06N3/0455 , G06N3/0475 , G06N3/09 , G06N3/094
Abstract: 本发明涉及一种基于多重水印融合与跨域学习的图像伪造主动防御方法,属于计算机视觉技术领域。其包括以下步骤:获取待处理图像;待处理图像经过水印编码器进行不可见水印嵌入和可见水印嵌入,分别得到嵌入不可见水印的图像和嵌入可见水印的图像;嵌入不可见水印的图像经过噪声层进行处理,得到噪声图像;嵌入可见水印的图像经过噪声层进行处理,通过可见水印联合优化在嵌入随机噪声的图像位置产生明显的虚假警示标识;噪声图像经过水印解码器进行图像的溯源和检测,判断图像的真实性;进行损失函数监督训练。本发明方法能够精准的判断图像是否经过深度伪造以及验证图像来源的真实性。
-
公开(公告)号:CN118939682B
公开(公告)日:2025-01-14
申请号:CN202411425826.2
申请日:2024-10-14
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) , 山东大学 , 浙江大华技术股份有限公司 , 山东省计算中心(国家超级计算济南中心)
IPC: G06F16/2452 , G06F16/242 , G06N5/022
Abstract: 本发明提供了一种基于知识引导的层级查询语句意图理解方法及系统,涉及自然语言处理技术领域,所述方法包括,获取查询语句,将查询语句转换为不同层级的语义嵌入向量;将外部知识图谱转化为知识嵌入矩阵,检索知识嵌入矩阵中与各层级的语义嵌入向量最相关的知识嵌入向量,将检索到的知识嵌入向量与对应的语义嵌入向量融合,得到各层级融合后的语义嵌入向量;根据各层级融合后的语义嵌入向量获取权重矩阵,计算权重重分配后的语义嵌入向量;基于注意力机制融合权重重分配后的语义嵌入向量与文本嵌入向量,得到查询语句的精确表征,确定查询语句的意图。本发明能够提高查询语句的理解与表征精准度。
-
公开(公告)号:CN118898797A
公开(公告)日:2024-11-05
申请号:CN202411404288.9
申请日:2024-10-10
Applicant: 山东大学 , 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) , 浙江大华技术股份有限公司 , 山东省计算中心(国家超级计算济南中心)
IPC: G06V20/40 , G06V10/774 , G06V10/24 , G06V10/80
Abstract: 本发明属于视频行为片段检索技术领域。提供了一种基于常识增强的视频行为片段候选集生成方法及系统,获取查询语句和待检索视频的语义特征表示;通过跨模态交互模块对视觉特征语义表示和文本特征语义表示进行交互,融合多模态信息;预测每个视频单元被保留的概率,并依据概率保留高信息有效性的视频单元;通过视觉适配层将保留的视频帧的特征映射到图文预训练大模型的输入空间;通过插入适配层对图文预训练大模型进行微调,并构造指令指示模型完成视频行为片段候选集生成任务。本发明引入图文预训练大模型以利用其中丰富的外部知识提高对视觉内容的理解,同时兼顾了视频行为片段候选集的生成速度和精度。
-
公开(公告)号:CN115238880B
公开(公告)日:2022-12-23
申请号:CN202211146873.4
申请日:2022-09-21
Applicant: 山东大学 , 华北电力大学(保定) , 智洋创新科技股份有限公司 , 南瑞集团有限公司 , 国网浙江省电力有限公司温州供电公司 , 山东省计算中心(国家超级计算济南中心)
Abstract: 本发明提供一种输电巡检终端的自适应部署方法、系统、设备以及存储介质,属于人工智能技术领域,通过搭建适配于所有输电巡检终端的超级网络;选择各变化维度中的参数最小值的子网络作为超级网络的基础模型,并对基础模型进行训练;选择单一变化维度作为变量,根据渐进策略获取采样扩展候选集,在采样扩展候选集中搜索设定数量的扩展子网络进行训练,并更新新增的网络参数;直至遍历所有子网络;通过神经网络搜索筛选最佳子网络,并基于最佳子网络对目标输电巡检终端进行部署。本发明在实现了节省计算资源的基础上,达到了确保子网络的精确度,有效缓解子网络之间相互干扰的显著效果。
-
公开(公告)号:CN115220479B
公开(公告)日:2022-12-13
申请号:CN202211140267.1
申请日:2022-09-20
Applicant: 山东大学 , 南瑞集团有限公司 , 智洋创新科技股份有限公司 , 国网浙江省电力有限公司温州供电公司 , 华北电力大学(保定) , 山东省计算中心(国家超级计算济南中心)
IPC: G05D1/10
Abstract: 本发明属于巡检技术领域,本发明提供了一种动静协同的输电线路精细化巡检方法与系统,通过动静态检测协同配合,实现电力系统大范围覆盖的精细化巡检,采用静态与动态数据的分段式检测提高检测精细化的同时,节省不必要的人力及算力资源。其包括以下步骤:固定采集设备采集回传静态信息;多层感知机融合多类别静态信息评估故障程度;巡检无人机对输电线路进行精细化巡检并上传多角度图像信息:若发生非紧急故障,则调用巡检无人机进行精细化巡检,获取所述巡检无人机的巡检信息,并通过通讯模块将所述巡检信息传输至目标数据控制中心;融合无人机多视角和固定视角图像信息的故障分类模型。
-
公开(公告)号:CN111738306B
公开(公告)日:2022-05-13
申请号:CN202010487922.5
申请日:2020-06-01
Applicant: 山东省人工智能研究院 , 山东省计算中心(国家超级计算济南中心)
Abstract: 一种基于块卷积神经网络的多视图三维模型检索方法,通过针对多视图图像,使用块卷积层在视图特征的提取过程中挖掘视图之间的内在联系。根据每个视图特征与最大视图池化后的特征之间的余弦相似度来给每个视图分配不同的权重,利用了视图特征之间区分性,得到更有区分性的模型特征。在生成损失函数时不仅考虑了模型特征还考虑了视图特征,可以更好约束网络进行学习。该基于块卷积神经网络的多视图三维模型检索方法在相关的三维模型检索数据集中达到了优良的性能。
-
公开(公告)号:CN119942055A
公开(公告)日:2025-05-06
申请号:CN202510057291.6
申请日:2025-01-14
Applicant: 天津理工大学 , 山东省人工智能研究院 , 山东省计算中心(国家超级计算济南中心) , 山东大学 , 浙江大华技术股份有限公司 , 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) , 合肥工业大学
IPC: G06V10/24 , G06V10/764 , G06V10/80 , G06V10/762
Abstract: 本发明涉及一种模糊片段增强和假阳性抑制的弱监督时序动作定位方法,属于计算机视觉领域。其包括以下步骤:数据获取;前景注意分数与片段级动作分类;模糊片段增强;动作背景分离;假阳性抑制;视频级动作分类与定位。本发明通过对模糊片段构建正负样本对,并采用对比学习损失约束,来增大模糊片段与可判别动作和背景片段的语义相关性,从而增强模糊片段的判别性,更好地进行前景背景分离;此外依据假阳性片段掩码以及计算假阳性分数对原始激活序列进行假阳性抑制,得到假阳性抑制的激活序列作为伪标签用监督损失约束,对原始的激活序列进行校正,达到抑制假阳性片段的目的,能够获得更准确的动作定位效果。
-
公开(公告)号:CN119625792B
公开(公告)日:2025-05-06
申请号:CN202510151987.5
申请日:2025-02-12
Applicant: 齐鲁工业大学(山东省科学院) , 山东省人工智能研究院 , 山东省计算中心(国家超级计算济南中心) , 山东大学 , 浙江大华技术股份有限公司 , 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) , 合肥工业大学
IPC: G06V40/10 , G06V10/82 , G06V10/764 , G06V10/74 , G06N3/0464
Abstract: 本发明涉及一种基于强化共性特征的换衣行人重识别方法及系统,属于计算机视觉技术领域。其包括以下步骤:获取待检索的行人图像数据集,并在数据集中确定原始图像和与原始图像相同身份标签的图像;数据集中图像经过衣服混合与匹配模块、人体身份增强流模块以及ResNet50模型进行特征提取,然后经过共性特征提取模块生成显著图,最后经过分类器得到分类结果;通过损失函数对前述过程进行迭代优化,得到训练好的ResNet50模型;将待检测图像输入到训练好的模型中,得到检索特征;将检索特征与检索库中的行人图像特征进行相似度匹配,得到行人重识别结果。本发明能够提取适应换衣场景下的更有鲁棒性和判别性的特征。
-
-
-
-
-
-
-
-
-