-
公开(公告)号:CN118897905A
公开(公告)日:2024-11-05
申请号:CN202411388560.9
申请日:2024-10-08
Applicant: 山东大学 , 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) , 浙江大华技术股份有限公司 , 山东省计算中心(国家超级计算济南中心) , 哈尔滨工业大学(威海)
IPC: G06F16/735 , G06F16/783 , G06F16/738 , G06N3/0455 , G06N3/08
Abstract: 本发明属于视频检索技术领域,提供了一种基于细粒度时空关联建模的视频片段定位方法及系统,其技术方案为:获取视频片段,利用时空查询表示,隐式挖掘视频片段中潜在所有物体信息;随后,基于时空表示多维交互模块,充分建模物体间时空关联关系;之后,通过有机融合局部和全局表示,全面提升视频片段的表示能力;最后,依据视频片段表示与用户查询表示相似性分数确定目标视频片段。本发明克服了现有技术中依赖离线物体检测工具进行物体时空信息提取、物体细粒度交互信息建模不充分等导致视频理解不佳的问题。
-
公开(公告)号:CN110555060B
公开(公告)日:2023-05-02
申请号:CN201910849336.8
申请日:2019-09-09
Applicant: 山东省计算中心(国家超级计算济南中心)
IPC: G06F16/2458 , G06F18/214 , G06N3/0464 , G06N3/0442
Abstract: 本发明属于图像分类和迁移学习技术领域,公开了一种基于成对样本匹配的迁移学习方法,实现了对基于不同域的样本内在关系的挖掘。具体包含以下步骤:(1)数据预处理,(2)基于迁移学习的双链模型构建,(3)实例归一化和批量归一化,(4)计算对比损失和最大均值距离损失。本发明的优点是通过结合实例归一化和批归一化同时进行学习,充分挖掘不同图像的风格和语义关联特性,实现在源域辅助下对少量目标域样本的高效识别。
-
公开(公告)号:CN110543581B
公开(公告)日:2023-04-04
申请号:CN201910848660.8
申请日:2019-09-09
Applicant: 山东省计算中心(国家超级计算济南中心)
IPC: G06F16/55 , G06F16/583 , G06V10/764 , G06V10/82 , G06N3/0464 , G06N3/048 , G06N3/08
Abstract: 该发明属于计算机视觉及深度学习领域,针对当前基于视图的深度学习方法不能捕获三维模型全面的空间信息的缺点,基于非局部图卷积网络的多视图三维模型检索方法挖掘融合多视图的高响应特征,从而得到单一紧凑的高辨别性模型描述符。其优越性能在三维模型检索中得到验证。该发明具体包含以下步骤:(1)获取模型的多视角图像,(2)多视角图像预处理,(3)设计非局部图卷积网络,(4)非局部图卷积网络训练,(5)提取模型深度特征,(6)三维模型的检索匹配。
-
公开(公告)号:CN115240075B
公开(公告)日:2022-12-13
申请号:CN202211154588.7
申请日:2022-09-22
Applicant: 山东大学 , 智洋创新科技股份有限公司 , 国网浙江省电力有限公司温州供电公司 , 华北电力大学(保定) , 浙江大华技术股份有限公司 , 山东省计算中心(国家超级计算济南中心)
IPC: G06V20/10 , G06V10/25 , G06V10/40 , G06V10/764 , G06V10/774 , G06V10/82 , G06T5/00 , G06N3/04 , G06N3/08
Abstract: 本发明涉及输电线路巡检技术领域,具体涉及一种电力视觉多粒度预训练大模型的构建与训练方法,包括图像修复、图像分类、目标检测、图像描述四个粒度层级的视觉任务;采用多阶段的大模型训练方法,使得模型具有数据挖掘、增量训练和模型进化的功能;其中,第一阶段在海量公开数据集上训练,输出预训练大模型;第二阶段在大量无标签电力场景数据集上进行自监督训练,输出电力视觉多粒度预训练大模型;第三阶段利用大模型针对电力数据集进行隐患图像筛选,大大减轻了人工筛选代价,将隐患图像数据交由人工进行精细化标注,再次输入大模型进行迭代优化,使得视觉预训练大模型更加适配电力场景视觉任务需求。
-
公开(公告)号:CN115272777A
公开(公告)日:2022-11-01
申请号:CN202211169230.1
申请日:2022-09-26
Applicant: 山东大学 , 智洋创新科技股份有限公司 , 国网浙江省电力有限公司温州供电公司 , 浙江大华技术股份有限公司 , 华北电力大学(保定) , 山东省计算中心(国家超级计算济南中心)
IPC: G06V10/764 , G06V10/772 , G06V10/774 , G06V10/82 , G06N3/08
Abstract: 本发明涉及输电线路巡检技术领域,具体涉及一种面向输电场景的半监督图像解析方法,包括以下步骤:S1:数据预处理:人工标注部分输电线路场景的分类数据集和目标检测数据集;S2:数据集的增广和模型优化训练:使用动态参数混合数据增广框架对有标注数据集进行数据增广和模型优化训练,将参数化后的混合数据增广策略融入到判别模型中;S3:半监督训练方法改良:基于S2中经过动态参数混合数据增广优化的模型,使用基于队列优化的鲁棒半监督训练方法,以最优队列的标签筛选策略替换传统的固定高阈值策略,来筛选高置信度伪标签以计算无监督损失;S4:获取S3中预训练好的模型参数,在输电线路图像解析的下游任务中测试效果。
-
公开(公告)号:CN115240075A
公开(公告)日:2022-10-25
申请号:CN202211154588.7
申请日:2022-09-22
Applicant: 山东大学 , 智洋创新科技股份有限公司 , 国网浙江省电力有限公司温州供电公司 , 华北电力大学(保定) , 浙江大华技术股份有限公司 , 山东省计算中心(国家超级计算济南中心)
IPC: G06V20/10 , G06V10/25 , G06V10/40 , G06V10/764 , G06V10/774 , G06V10/82 , G06T5/00 , G06N3/04 , G06N3/08
Abstract: 本发明涉及输电线路巡检技术领域,具体涉及一种电力视觉多粒度预训练大模型的构建与训练方法,包括图像修复、图像分类、目标检测、图像描述四个粒度层级的视觉任务;采用多阶段的大模型训练方法,使得模型具有数据挖掘、增量训练和模型进化的功能;其中,第一阶段在海量公开数据集上训练,输出预训练大模型;第二阶段在大量无标签电力场景数据集上进行自监督训练,输出电力视觉多粒度预训练大模型;第三阶段利用大模型针对电力数据集进行隐患图像筛选,大大减轻了人工筛选代价,将隐患图像数据交由人工进行精细化标注,再次输入大模型进行迭代优化,使得视觉预训练大模型更加适配电力场景视觉任务需求。
-
公开(公告)号:CN115223049A
公开(公告)日:2022-10-21
申请号:CN202211140194.6
申请日:2022-09-20
Applicant: 山东大学 , 国网浙江省电力有限公司温州供电公司 , 华北电力大学(保定) , 智洋创新科技股份有限公司 , 南瑞集团有限公司 , 山东省计算中心(国家超级计算济南中心)
IPC: G06V20/10 , G06V10/74 , G06V10/774 , G06V10/82 , G06N3/08
Abstract: 本发明属于压缩技术领域,具体提供了一种面向电力场景边缘计算大模型压缩的知识蒸馏与量化技术。其包括以下步骤:电力场景任务抽象;双层知识蒸馏网络单元构建;教师模型修饰处理;主从教师监督框架:基于教师‑学生蒸馏网络,使用多个数据集训练不同的教师模型,包括与目标任务类似的场景数据集和实际落地场景的数据集,将这些数据集进行划分,训练多个教师模型,按照数据集与落地场景相似度分配指导权重,分为主教师模型和若干个从教师模型,从而对学生模型进行不同层面的知识引导,提高学生模型在复杂场景下的泛化能力;学生模型压缩感知训练。
-
公开(公告)号:CN110309850A
公开(公告)日:2019-10-08
申请号:CN201910407218.1
申请日:2019-05-15
Applicant: 山东省计算中心(国家超级计算济南中心)
Abstract: 本公开公开了基于语言先验问题识别和缓解的视觉问答预测方法及系统,包括:测试步骤:将测试集的测试图像、测试语言问题和测试语言答案,均输入到初步训练好的视觉问答模型中,对初步训练好的视觉问答模型进行测试;在测试的过程中,根据模型输出的语言答案的准确率计算语言先验得分;如果语言先验得分超过设定阈值,表示当前模型存在语言先验问题,则重新对视觉问答模型进行训练;如果语言先验得分低于设定阈值,表示当前模型不存在语言先验问题,即当前模型即为训练好的视觉问答模型;预测步骤:将待预测的图像和语言问题,输入到训练好的视觉问答模型中,输出最终的预测语言答案。
-
公开(公告)号:CN119942055A
公开(公告)日:2025-05-06
申请号:CN202510057291.6
申请日:2025-01-14
Applicant: 天津理工大学 , 山东省人工智能研究院 , 山东省计算中心(国家超级计算济南中心) , 山东大学 , 浙江大华技术股份有限公司 , 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) , 合肥工业大学
IPC: G06V10/24 , G06V10/764 , G06V10/80 , G06V10/762
Abstract: 本发明涉及一种模糊片段增强和假阳性抑制的弱监督时序动作定位方法,属于计算机视觉领域。其包括以下步骤:数据获取;前景注意分数与片段级动作分类;模糊片段增强;动作背景分离;假阳性抑制;视频级动作分类与定位。本发明通过对模糊片段构建正负样本对,并采用对比学习损失约束,来增大模糊片段与可判别动作和背景片段的语义相关性,从而增强模糊片段的判别性,更好地进行前景背景分离;此外依据假阳性片段掩码以及计算假阳性分数对原始激活序列进行假阳性抑制,得到假阳性抑制的激活序列作为伪标签用监督损失约束,对原始的激活序列进行校正,达到抑制假阳性片段的目的,能够获得更准确的动作定位效果。
-
公开(公告)号:CN119625792B
公开(公告)日:2025-05-06
申请号:CN202510151987.5
申请日:2025-02-12
Applicant: 齐鲁工业大学(山东省科学院) , 山东省人工智能研究院 , 山东省计算中心(国家超级计算济南中心) , 山东大学 , 浙江大华技术股份有限公司 , 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) , 合肥工业大学
IPC: G06V40/10 , G06V10/82 , G06V10/764 , G06V10/74 , G06N3/0464
Abstract: 本发明涉及一种基于强化共性特征的换衣行人重识别方法及系统,属于计算机视觉技术领域。其包括以下步骤:获取待检索的行人图像数据集,并在数据集中确定原始图像和与原始图像相同身份标签的图像;数据集中图像经过衣服混合与匹配模块、人体身份增强流模块以及ResNet50模型进行特征提取,然后经过共性特征提取模块生成显著图,最后经过分类器得到分类结果;通过损失函数对前述过程进行迭代优化,得到训练好的ResNet50模型;将待检测图像输入到训练好的模型中,得到检索特征;将检索特征与检索库中的行人图像特征进行相似度匹配,得到行人重识别结果。本发明能够提取适应换衣场景下的更有鲁棒性和判别性的特征。
-
-
-
-
-
-
-
-
-