-
公开(公告)号:CN119272205A
公开(公告)日:2025-01-07
申请号:CN202411783759.1
申请日:2024-12-06
Applicant: 齐鲁工业大学(山东省科学院) , 山东省计算中心(国家超级计算济南中心)
IPC: G06F18/2433 , H04L9/40 , G06F18/15 , G06F18/213 , G06F18/2431 , G06N3/0455 , G06N3/0442 , G06N3/084 , G06Q50/06
Abstract: 本发明属于网络安全和数据保护的技术领域,更具体地,涉及基于TGRU模型的虚假数据注入攻击检测与定位方法。所述方法首先通过预处理多种传感器的测量数据,输入到TGRU模型进行训练,结合Transformer的全局特征提取能力与GRU的时间序列处理能力进行数据分析。利用基于欧几里得距离的双重计算机制分析正常数据和攻击数据的分布,设定检测阈值。一旦检测到攻击,系统将当前时刻TGRU模型生成的预测数据与检测到的攻击数据进行整合,训练元模型以实现攻击位置的精确定位。最终,通过优化模型架构减少计算步骤,确保高效运行。本发明解决了现有技术在处理复杂网络环境中的局限性,尤其是在应对高维时序数据时精度不足且计算效率低的问题。
-
公开(公告)号:CN118378255B
公开(公告)日:2024-09-10
申请号:CN202410825770.3
申请日:2024-06-25
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
Abstract: 本发明属于数据安全技术领域,更具体地,涉及一种差分隐私保护约束下抗投毒攻击的联邦学习方法、装置及计算机可读存储介质。包括在客户端定义差分隐私;客户端获取服务端全局模型后使用自身的训练数据集更新本地模型,计算差分隐私噪声并添加到各个客户端的本地模型中;将添加了差分隐私噪声的本地模型发送至服务端,选出恶意客户端;服务端为各个客户端分配权重,然后将各个客户端的本地模型进行聚合得到训练好的全局模型并发送至各个客户端;各个客户端获取训练好的全局模型,完成一次迭代,达到设置训练轮次之后,输出最终全局模型并结束训练。本发明解决了现有技术中投毒攻击防御方案尚无法在差分隐私保护下有效检测出恶意客户端。
-
公开(公告)号:CN117932125B
公开(公告)日:2024-06-14
申请号:CN202410331043.1
申请日:2024-03-22
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06F16/903 , G06F21/62 , G06F21/60 , G06F16/901
Abstract: 本发明属于数据安全的技术领域,更具体地,涉及一种支持隐私保护的可验证空间关键字查询方法及装置。该方法包括:数据拥有者端加密其空间数据集,构建密文索引,并将空间数据集和密文索引上传云服务器端;查询用户端根据数据拥有者端提供的密钥信息和辅助参数生成搜索令牌并提交云服务器端;云服务器端根据搜索令牌检索密文索引,并向查询用户端返回相应的空间对象密文信息和验证信息;查询用户端基于密钥信息、辅助验证信息、空间对象密文信息和验证信息,先进行本地验证,再对验证通过的空间对象密文信息进行解密。本发明用于在用户给定的空间范围内返回其所期望的空间数据对象,在保证安全性的同时实现高效搜索,并支持对结果的验证。
-
公开(公告)号:CN118070929A
公开(公告)日:2024-05-24
申请号:CN202410465104.3
申请日:2024-04-18
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06N20/20 , G06F18/2431
Abstract: 本发明属于分布式机器学习系统优化的技术领域,涉及一种分布式机器学习系统中梯度异构双重优化方法、装置、电子设备及存储介质。该方法包括:构建包含#imgabs0#个节点和单个参数服务器的分布式学习系统,节点为诚实节点和恶意节点;基于诚实节点从其局部数据集选取的数据样本,计算并修正数据样本的局部梯度,以迭代优化本地梯度差异;引入动量项,将修正后的局部梯度与上一迭代轮次的动量向量结合,再将得到的当前迭代轮次的动量向量归一化为单位动量向量发送给参数服务器,得到局部聚合结果;对局部聚合结果进行全局聚合,以迭代优化全局梯度差异。本发明解决了由于本地梯度差异和全局梯度差异而制约系统在面对恶意节点和攻击时的鲁棒性表现的问题。
-
公开(公告)号:CN117454381A
公开(公告)日:2024-01-26
申请号:CN202311800375.1
申请日:2023-12-26
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06F21/56 , G06F18/214 , G06F21/55
Abstract: 本发明属于信息安全的技术领域,更具体地,涉及一种非独立同分布数据下面向联邦学习的渐进性攻击方法。所述方法服务器端随机初始化一个全局模型作为第一轮全局模型,下发到各个客户端,攻击者选用该全局模型作为攻击模型;所述客户端收到全局模型后在本地执行训练形成局部模型,并将局部模型上传到服务器端;所述服务器端将局部模型更新聚合,形成新一轮全局模型,继续下发至客户端;在每轮训练中,客户端使用接收到的全局模型更新其局部模型并在本地数据集上进行训练;结束训练。本发明解决了现有技术中攻击者为隐藏其攻击操作导致控制模型性能逐渐下降并导致数据非独立同分布联邦学习中的攻击检测变得更加困难的问题。
-
公开(公告)号:CN117349894A
公开(公告)日:2024-01-05
申请号:CN202311629347.8
申请日:2023-12-01
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06F21/62 , G06F21/60 , G06F21/33 , G06N5/022 , G06N5/02 , G06F16/36 , G06F16/901 , G06F16/903 , H04L9/40 , H04L9/00 , H04L9/06 , H04L9/08
Abstract: 本发明属于保密通信的技术领域,更具体地,涉及一种基于填充字典加密的图结构最短路径查询方法。所述方法包括数据拥有者构造填充字典结构的密文图;数据拥有者向有查询需求的用户通过安全信道发送授权令牌;生成查询令牌,用户将查询令牌发送至云服务器端;云服务器在接收到密文图和查询令牌之后,进行最短距离查询;获取明文查询结果。本发明解决了现有技术中用户的数据存储在第三方服务器上,可能会面临数据泄露和安全漏洞的风险以及查询效率较低的问题。
-
公开(公告)号:CN117196070A
公开(公告)日:2023-12-08
申请号:CN202311474649.2
申请日:2023-11-08
Applicant: 山东省计算中心(国家超级计算济南中心)
Abstract: 本发明属于异构数据下的联邦学习的技术领域,更具体地,涉及一种面向异构数据的双重联邦蒸馏学习方法及装置。所述方法包括全局知识蒸馏和局部知识蒸馏,全局知识蒸馏包括利用全局生成器生成全局伪数据,将全局伪数据输入局部模型和初始聚合模型,并根据模型输出结果对初始聚合模型微调,得到全局模型;局部知识蒸馏包括利用局部生成器生成局部伪数据,将局部伪数据输入局部模型和全局模型,并根据模型输出结果更新局部生成器,再利用更新后的局部生成器生成新的局部伪数据,利用新的局部伪数据更新局部模型。本发明保障数据异构环境下产生客户漂移现象时联邦学习系统中服务端和客户端双边优化,实现全局模型和局部模型的稳定收敛及性能提升。
-
公开(公告)号:CN116822661B
公开(公告)日:2023-11-14
申请号:CN202311100506.5
申请日:2023-08-30
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
Abstract: 一种基于双服务器架构的隐私保护可验证联邦学习方法,属于人工智能的技术领域。包括:密钥生成中心、客户端、聚合服务器和辅助服务器;本发明采用中国剩余定理CRT对梯度进行压缩,并使用Paillier同态加密算法对本地梯度进行加密;同时,为避免单个服务器被攻陷成为恶意服务器,进而会威胁数据安全,本发明将聚合梯度和聚合哈希标签的计算过程分别分配给了聚合服务器AS和辅助服务器SS两个不同的服务器。本发明通过辅助服务器SS所聚合的哈希标签来辅助客户端验证聚合服务器AS聚合结果的正确性,为联邦学习训练模型的准确性提供了有效保障。
-
公开(公告)号:CN115442160A
公开(公告)日:2022-12-06
申请号:CN202211388174.0
申请日:2022-11-08
Applicant: 山东省计算中心(国家超级计算济南中心)
Abstract: 一种差分隐私保护下的网络化系统数据隐蔽攻击检测方法,属于信息安全的技术领域,所述检测方法,首先,对网络化系统进行建模并设计基于系统噪声参数的攻击检测机制;然后,根据已知系统信息,为攻击者设计最优数据隐蔽攻击策略;接着,在保障网络化系统敏感数据隐私的情形下,通过隐私噪声调度机制确定隐私噪声添加的时刻,并实现最优系统控制性能。基于以上设计,可在保护系统数据隐私性以及保障系统达到最优运行性能的基础上,对可能发生的数据隐蔽攻击进行有效检测。
-
公开(公告)号:CN120030535A
公开(公告)日:2025-05-23
申请号:CN202510481176.1
申请日:2025-04-17
Applicant: 齐鲁工业大学(山东省科学院) , 山东省计算中心(国家超级计算济南中心)
IPC: G06F21/55 , G06N3/0442
Abstract: 本发明属于智能电网数据安全保护的技术领域,具体涉及一种基于电网信息物理耦合的APT溯源方法及装置,其方法包括:获取审计日志数据并将其重构为因果关系图,基于该因果关系图构建训练样本集对LSTM模型进行训练;基于物理层拓扑和物理层母线节点的过载情况构建过载关联图,并对其中各支路做脆弱性评估;基于各支路的真实过载情况对其进行二分类,构建过载依赖关系库,并评估各支路过载关联的破坏性影响;基于上述两个评估结果确定可疑支路序列,并根据信息‑物理拓扑关系和时间属性缩小可疑日志范围,得到待识别日志,将该待识别日志重构为目标因果关系图,利用训练好的LSTM模型对其进行识别,以判别出攻击实体并还原攻击路径。
-
-
-
-
-
-
-
-
-