-
公开(公告)号:CN117081064A
公开(公告)日:2023-11-17
申请号:CN202311129365.X
申请日:2023-09-01
Applicant: 国电南瑞科技股份有限公司
IPC: H02J3/00 , G06F18/25 , G06F18/214
Abstract: 本发明公开了一种基于误差评估的风电功率组合预测方法和系统,该方法包括:获取数值天气预报和实测风电功率数据;对数据中存在的异常值、缺失值异常点清洗和填充;对清洗后的实测风电功率数据时序对齐,构建风电功率数据集并划分为训练集、验证集和测试集;构建三种单一预测模型;识别不同风电功率预测场景并分类,利用训练集和验证集对各预测模型训练与验证,计算每个预测结果与实际风电功率的预测误差并统计;利用测试集测试各模型,结合各模型预测误差评估结果,对不同预测场景挑选误差最低的单一模型实现组合输出。本发明解决了数值天气预报精度受限情况下的风电功率预测精度较低的问题,可进一步提高风电功率预测泛化性和准确性。
-
公开(公告)号:CN116070741A
公开(公告)日:2023-05-05
申请号:CN202211680717.6
申请日:2022-12-27
Applicant: 国电南瑞科技股份有限公司
IPC: G06Q10/04 , G06Q10/0631 , G06Q50/06 , G06N3/08 , G06N3/0464
Abstract: 本发明公开了一种基于深度强化学习的调度优化决策系统及其存储介质,包括:数据处理层,用于对电网采集的电网历史数据或电网实时数据进行相关性处理;还用于电网历史数据和电网实时数据的预处理;模型构建层,用于在电网运行的基本规则基础上融合专家经验形成调度优化决策强化学习模型的训练输入值,获得调度优化决策系统;系统应用层,用于将电网实时数据输入训练获得的调度优化决策系统,输出电网调度计划。本发明设立了数据处理层、模型构建层和系统应用层,处理电网实时采集数据,融合专家经验提取特征值,训练调度优化决策强化学习模型,提高了新能源充分消纳下的电网安全稳定运行效率。
-
公开(公告)号:CN110321809A
公开(公告)日:2019-10-11
申请号:CN201910513300.2
申请日:2019-06-13
Applicant: 国电南瑞科技股份有限公司
Abstract: 本发明公开了一种基于深度学习的变电站作业现场监测装置,包括:现场监控人员和作业人员进入变电站作业现场监测程序;现场监控人员选择并确认第一个操作步骤,执行监测工作;摄像头采集现场作业视频文件,并转换为RGB图像;加载改进的深度神经网络YOLO-V3;输入图像,对设备和标识进行自动识别,判断操作行为是否符合安全规范;根据识别和判断结果,当场发出警告并给出评价结果;将识别和评价结果实时可视化地展现给现场监控人员;现场监控人员确认评价结果并选择进入下一步骤或结束本次操作。使用模型结构剪枝和权重量化两种深度神经网络轻量化方法,实现了深度神经网络模型在嵌入式智能终端中的高精度实时推断,提高安全性和效率。
-
-