一种基于误差评估的风电功率组合预测方法和系统

    公开(公告)号:CN117081064A

    公开(公告)日:2023-11-17

    申请号:CN202311129365.X

    申请日:2023-09-01

    Abstract: 本发明公开了一种基于误差评估的风电功率组合预测方法和系统,该方法包括:获取数值天气预报和实测风电功率数据;对数据中存在的异常值、缺失值异常点清洗和填充;对清洗后的实测风电功率数据时序对齐,构建风电功率数据集并划分为训练集、验证集和测试集;构建三种单一预测模型;识别不同风电功率预测场景并分类,利用训练集和验证集对各预测模型训练与验证,计算每个预测结果与实际风电功率的预测误差并统计;利用测试集测试各模型,结合各模型预测误差评估结果,对不同预测场景挑选误差最低的单一模型实现组合输出。本发明解决了数值天气预报精度受限情况下的风电功率预测精度较低的问题,可进一步提高风电功率预测泛化性和准确性。

    一种基于深度学习的变电站作业现场监测方法及装置

    公开(公告)号:CN110321809A

    公开(公告)日:2019-10-11

    申请号:CN201910513300.2

    申请日:2019-06-13

    Abstract: 本发明公开了一种基于深度学习的变电站作业现场监测装置,包括:现场监控人员和作业人员进入变电站作业现场监测程序;现场监控人员选择并确认第一个操作步骤,执行监测工作;摄像头采集现场作业视频文件,并转换为RGB图像;加载改进的深度神经网络YOLO-V3;输入图像,对设备和标识进行自动识别,判断操作行为是否符合安全规范;根据识别和判断结果,当场发出警告并给出评价结果;将识别和评价结果实时可视化地展现给现场监控人员;现场监控人员确认评价结果并选择进入下一步骤或结束本次操作。使用模型结构剪枝和权重量化两种深度神经网络轻量化方法,实现了深度神经网络模型在嵌入式智能终端中的高精度实时推断,提高安全性和效率。

Patent Agency Ranking