-
公开(公告)号:CN115983379A
公开(公告)日:2023-04-18
申请号:CN202310265601.4
申请日:2023-03-20
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G06N5/01 , G06N5/02 , G06N3/0464 , G06N3/084
Abstract: 公开了一种MDATA知识图谱的可达路径查询方法及其系统,其首先基于大型网络中的IP关联性构建通信图和实际场景下网络中节点之间的通信关系构建MDATA知识图谱,接着计算MDATA知识图谱的强连通子图和所述强连通子图中心顶点,并以中心顶点为核心构建节点的两跳标签索引,继而基于两条标签索引查询节点间的可达路径以实现快速查询来自不同强连通子图的两个节点的可达性与路径关系。同时,依据存储的事件时间对可达路径进行筛选以过滤掉不符合事件发展顺序的无效路径,从而保存攻击者实际采用的攻击路径和采用的操作,最终能够结合模式匹配的方法依据操作的时序关系和路径分析出攻击者选用的攻击方式从而采取防御措施。
-
公开(公告)号:CN115828269A
公开(公告)日:2023-03-21
申请号:CN202310115880.6
申请日:2023-02-15
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G06F21/57 , G06F21/56 , G06N3/08 , G06N3/0442 , G06N3/045
Abstract: 本公开提供了一种源代码漏洞检测模型的构建方法、装置、设备及存储介质,通过构建代码结构图,所述代码结构图包括节点、边信息、节点类型以及边类型;基于所述代码结构图构建元路径图,其中,所述元路径图中的元路径用于代表由边信息连接的源节点到目标节点的异构关系;基于元路径注意力机制学习所述元路径图中各个元路径的异构关系,以及基于分层注意力机制学习超过预设距离的节点之间的依赖关系,从而使得图神经网络能够学习代码的语法结构信息,提升代码漏洞检测的性能。
-
公开(公告)号:CN119853910A
公开(公告)日:2025-04-18
申请号:CN202510334207.0
申请日:2025-03-20
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本公开提供一种道路交通终端标识方法及相关装置,该方法包括:客户端对道路交通终端设备采集硬件信息和时间戳,生成对称密钥并创建终端标识码。使用对称密钥加密终端标识码,接收代理节点的代理公钥并加密对称密钥。生成客户端公私钥,用私钥对终端标识码签名。将客户端公钥、加密后的终端标识码、加密后的对称密钥及终端标识签名发送至代理节点,由其生成终端标识解析结果并返回。本公开减轻了终端设备的计算和存储压力,提升了标识管理的效率和安全性,增强了系统的实时性和解析效率。
-
公开(公告)号:CN119229152B
公开(公告)日:2025-03-18
申请号:CN202411756558.2
申请日:2024-12-03
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G06V10/75 , G06V10/764 , G06V10/82 , G06N3/042 , G06N3/0895
Abstract: 本发明公开了一种基于密集感知图对比学习的子图匹配方法、系统、电子设备及存储介质,方法包括针对图数据集中的初始化子图,利用随机子图增强方法或密集子图增强方法获取正样本子图和非子图负样本;建立图表示学习嵌入模型,图表示学习嵌入模型基于图神经网络框架,利用图同构网络作为编码器,将图结构嵌入到高维度向量;将正样本子图和非子图负样本输入图表示学习嵌入模型并利用分类器验证结果。本发明方法将图对比学习融入子图匹配,以自监督学习方式避免了对大量标注数据的依赖;本发明提出的密集子图增强策略可以在保留数据内在属性的基础上,更好地对数据进行处理,提高模型对数据特征的学习能力,从而提升子图匹配的准确性和效率。
-
公开(公告)号:CN119377358A
公开(公告)日:2025-01-28
申请号:CN202411932240.5
申请日:2024-12-26
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G06F16/332 , G06N5/025 , G06F18/241 , G06F18/214
Abstract: 本发明提供了一种面向多源信息冲突的威胁情报可信度分析方法,获取同IP中不同来源的威胁情报数据;提取情报数据中描述攻击者采取攻击行为的时间、地点和攻击类型,度量情报的可信度,对攻击时间、地点及攻击类型进行编码,结合可信度制作成情报数据的训练材料,导入分类学习模型进行深度学习,学习模型最终能准确地分类新的情报数据并判断其可信度;通过大型语言模型对情报源的权威度给出评分,利用检索增强生成技术生成答可信度结果;输出同IP下更为可信的可信度判定结果。本发明能够全面评估多源威胁情报数据的质量,通过检测多情报间的一致性发现情报冲突,剔除低质量数据。
-
公开(公告)号:CN119377036A
公开(公告)日:2025-01-28
申请号:CN202411318246.3
申请日:2024-09-20
Applicant: 电子科技大学(深圳)高等研究院 , 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G06F11/30
Abstract: 本申请实施例提供了一种审计日志缩减方法、系统、电子设备及存储介质,属于审计日志技术领域。该方法包括:获取原始日志数据;将原始日志数据输入至目标缓存进行操作解析,得到目标缓存的多个三元组数据;其中,每一三元组数据中包含两个节点子数据、以及节点子数据之间的节点动作信息;基于节点子数据与节点动作信息,对三元组数据进行文件引用缩减处理,得到文件引用缩减数据;基于节点子数据与节点动作信息,对三元组数据进行时间依赖关系缩减处理,得到时间依赖关系缩减数据;基于文件引用缩减数据和时间依赖关系缩减数据进行关联提取,得到目标缩减日志。本申请实施例能够对审计日志进行缩减。
-
公开(公告)号:CN118941606B
公开(公告)日:2025-01-07
申请号:CN202411415165.5
申请日:2024-10-11
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本发明提供了一种自动驾驶单目深度估计的道路物理域对抗补丁生成方法,形成场景图像数据集;生成目标车辆的掩码图像,目标车辆转换成像素坐标系下的像素坐标,将目标汽车嵌入场景图像中得到目标对象场景图;将道路补丁转换成像素坐标系下的像素坐标;通过场景构造模块得到多个场景图像,得到多方道路补丁视图集;计算深度损失及特征损失,构造目标损失函数;通过目标函数计算由模型输入相应补丁区域大小加权的平均梯度,使用平均梯度作为道路补丁图像的梯度,使用MI‑FGSM的方法更新当前补丁,当达到最大迭代次数时生成最终道路对抗补丁。本发明的方法使得单目深度估计技术更加精准、可靠,鲁棒性更高。
-
公开(公告)号:CN119052006A
公开(公告)日:2024-11-29
申请号:CN202411554523.0
申请日:2024-11-04
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本发明公开了一种基于大语言模型提示学习的网络攻击流量检测规则生成方法、系统及介质,所述方法包括以下步骤:对原始包数据完成流量明文的重组与解码,将原始的流量会话数据转化为可阅读可理解的HTTP请求报文数据;基于大语言模型提示学习完成网络攻击流量检测规则的生成、细化与优化;完成攻击流量样本、检测规则信息与安全知识库的映射过程。相对于现有技术,本发明能更有效的生成针对攻击流量的检测规则以及获取对应的安全知识。
-
公开(公告)号:CN117955745B
公开(公告)日:2024-07-02
申请号:CN202410347079.9
申请日:2024-03-26
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: H04L9/40 , G06F18/214 , G06F18/213 , G06F18/2132 , G06F18/2135 , G06F18/23213 , G06F18/25
Abstract: 本发明涉及网络安全领域及计算机深度学习领域,特别涉及一种融合网络流量特征和威胁情报的网络攻击同源性分析方法。其包括步骤:S1.构建网络流量特征;S2.构建威胁情报特征;S3.使用聚类进行网络攻击同源性分析。本方法分析的网络攻击是单步攻击,采用设备捕获的网络流量数据和开源威胁情报进行网络攻击同源性分析,相比现有方法,本发明使用的特征较为全面,更能表征网络攻击的特点。结合网络攻击的有效载荷特征、网络攻击的通信行为特征以及威胁情报特征,更能全面的表示一个网络攻击,有利于后续的同源性分析。
-
公开(公告)号:CN118118274A
公开(公告)日:2024-05-31
申请号:CN202410445603.6
申请日:2024-04-15
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: H04L9/40
Abstract: 本发明提供了一种基于图异常检测算法的网络入侵检测方法、系统及介质,该方法包括:针对不同的协议将网络流量数据包按照五元组聚合为网络流,所述五元组包括源IP地址、源端口号、目的IP地址、目的端口号和传输层协议;使用聚合好的网络流构建同源网络流图和同目的网络流图,并采用相似度计算减小同源网络流图和同目的网络流图的规模;使用图自编码器对同源网络流图和同目的网络流图进行编码解码,最终得到每个网络流的异常分,进而根据每个网络流的异常分判断是否为异常恶意流量。本发明能对网络流之间的关系进行充分建模。
-
-
-
-
-
-
-
-
-