一种基于远域迁移学习的图像识别方法

    公开(公告)号:CN114783072A

    公开(公告)日:2022-07-22

    申请号:CN202210266952.2

    申请日:2022-03-17

    Abstract: 本发明公开一种基于远域迁移学习的图像识别方法,包括如下步骤:将特定领域的小样本图像作为目标域,同时将与目标域相似度高的无标签图像作为辅助域,将自然场景图像作为源域,通过基于ResNet50的轻量级网络提取各自域的高级语义特征;利用具有域距离度量的卷积自动编码器并通过辅助域作为桥梁对源域和目标域的高级语义特征进行特征融合;通过卷积自动解码器重构各自域的高级语义特征;最后通过全连接层对目标域图像进行识别,整个过程通过多任务损失函数进行优化。本发明改善了模型对高级语义信息的提取能力和稳定性,有效提升了模型远域特征迁移能力,本发明可以用于不同任务的图像识别任务。

Patent Agency Ranking