一种异形金属部件适形涡流检测方法及其检测装置

    公开(公告)号:CN114280139A

    公开(公告)日:2022-04-05

    申请号:CN202111533181.0

    申请日:2021-12-15

    Abstract: 本发明一种异形金属部件适形涡流检测方法及其检测装置,用于对不同形状弧度曲面的异形金属零部件或者一个具有不同弧度曲面组成异形金属零部件的电磁涡流检测的检测装置(10),其特征在于包括若干个检测面(11),以及检测面上的外部涡流检测传感器(12),其中,所述检测面(11)至少一第一检测面(111)和第二检测面(112)为不同弧度的曲面;实现根据不同的工件检测部位,选择近似的线圈弧面段进行检测。

    一种提高自然裂纹涡流测深准确度的方法

    公开(公告)号:CN111044606A

    公开(公告)日:2020-04-21

    申请号:CN201911366544.9

    申请日:2019-12-26

    Abstract: 本发明公开了一种提高自然裂纹涡流测深准确度的方法,在涡流检测仪器上制作多组不同深度值的单个人工裂纹及叠加后与单个人工裂纹具有同等深度的多个人工裂纹的涡流信号幅度相位曲线组,以此作为不同深度值的人工裂纹涡流信号幅度相位标定曲线组,将检测的被测工件上的裂纹缺陷的涡流信号幅度与相位曲线与不同深度值的人工裂纹涡流信号幅度相位标定曲线组进行比对,即可得到被测工件上的裂纹缺陷的裂纹深度值,同时也能够得知该裂纹缺陷为一个深裂纹还是多个浅裂纹,如此一来,实现了在对裂纹深度进行测量的同时判断出裂纹为单裂纹还是多裂纹,从而提高检测准确度,有效防止误判。

    一种提高涡流检测速率的方法及其装置

    公开(公告)号:CN113866262B

    公开(公告)日:2025-03-21

    申请号:CN202111167089.7

    申请日:2021-10-02

    Abstract: 本发明一种提高涡流检测速率的方法及其装置,用于金属管棒1的在役的电磁涡流检测,检测装置2包括激励线圈(21)和一个以上的检测线圈(22),其特征在于一个以上的检测线圈(21)排列设置为在电磁涡流移动检测的移动方向上的同一直线上,同一直线上排列的检测线圈在电磁涡流移动检测时,检测经过被检测对象的同一位置,选择性地匹配叠加多个检测线圈的有效检测数据,形成新的电磁检测数据。本发明实现在不影响检测灵敏度的情况下,可加大检测速度,提高工作效率。

    一种多频在线监测油液中金属颗粒的方法及其检测装置

    公开(公告)号:CN113029879B

    公开(公告)日:2024-05-24

    申请号:CN202110293468.4

    申请日:2021-03-19

    Abstract: 本发明一种多频在线监测油液中金属颗粒的方法及其检测装置,用于长期在线动力系统管道(1)中油液的铁磁性颗粒数量和质量的检测,通过导线(21)连接于检测仪器(2),所述检测装置(3)包括第一激励线圈(31)、第二激励线圈(32)、检测线圈(33)和圆柱形的空心骨架(34),其特征在于所述第一激励线圈(31)、第二激励线圈(32)相对称地排布于检测线圈(33)两边同心缠绕于空心骨架(34)的外围表面上。实现利用多个检测频率,并配合不同的激励幅度变化,获得了大范围的颗粒检测目的。

    一种含微铁屑螺纹管的电磁检测方法及其检测装置

    公开(公告)号:CN115791956A

    公开(公告)日:2023-03-14

    申请号:CN202211473604.9

    申请日:2022-11-23

    Abstract: 本发明一种含微铁屑螺纹管的电磁检测方法及其检测装置,用于如空调等使用的铜散热管的电磁涡流检测缺陷评估方法,电联接于涡流检测分析仪器,通过增加磁化装置的方法,在涡流检测的过程中增加额外磁场,提高铜管内微铁屑的分辨率。本发明通过在常规外穿过式涡流检测的基础上,增加永磁铁,用于磁化刀具的刃尖铁屑。或者,采用外层为磁饱和线圈、内层为检测线圈的设计,如此可消除管壁上铁屑杂质的影响,提高检测灵敏度。

    一种提高涡流检测速率的方法及其装置

    公开(公告)号:CN113866262A

    公开(公告)日:2021-12-31

    申请号:CN202111167089.7

    申请日:2021-10-02

    Abstract: 本发明一种提高涡流检测速率的方法及其装置,用于金属管棒1的在役的电磁涡流检测,检测装置2包括激励线圈(21)和一个以上的检测线圈(22),其特征在于一个以上的检测线圈(21)排列设置为在电磁涡流移动检测的移动方向上的同一直线上,同一直线上排列的检测线圈在电磁涡流移动检测时,检测经过被检测对象的同一位置,选择性地匹配叠加多个检测线圈的有效检测数据,形成新的电磁检测数据。本发明实现在不影响检测灵敏度的情况下,可加大检测速度,提高工作效率。

    一种基于深度学习的钢轨裂纹定量涡流检测方法和装置以及设备

    公开(公告)号:CN115629124A

    公开(公告)日:2023-01-20

    申请号:CN202211075461.6

    申请日:2022-09-02

    Applicant: 厦门大学

    Abstract: 本发明公开了一种基于深度学习的钢轨裂纹定量涡流检测方法和装置以及设备,包括:采集裂纹涡流响应,建立第一信号曲线;计算裂纹倾角,并对称化转换第一信号曲线,输出第二信号曲线;将第二信号曲线导入垂直裂纹深度学习模型,基于分析结果重构斜裂纹并确定斜裂纹深度和宽度。为了使垂直裂纹信号曲线数据集训练出的深度学习模型能用于斜裂纹的定量检测,将不对称的斜裂纹信号曲线对称化转换成对称曲线。在获得斜裂纹的对称化信号曲线后,使用训练好的垂直裂纹深度学习模型对对称信号曲线的数据进行反演,获得斜裂纹的剖面轮廓曲线,进而计算斜裂纹的宽度和垂直深度。

    一种金属3D打印的在线检测方法、金属3D打印机及设备

    公开(公告)号:CN113547135A

    公开(公告)日:2021-10-26

    申请号:CN202110819483.8

    申请日:2021-07-20

    Applicant: 厦门大学

    Abstract: 本发明公开了一种金属3D打印的在线检测方法,所述在线检测方法应用于金属3D打印机,所述金属3D打印机包括金属3D打印机本体、激光能量密度调节单元、多个超声波接收单元以及检测单元,金属3D打印机本体包括铺粉单元以及打印基板,超声波接收单元矩阵布设于所述打印基板的底面,所述在线检测方法包括:通过所述铺粉单元在所述打印基板上铺设一定厚度的金属粉末层,然后通过所述激光能量密度调节单元调节激光能量烧结所述金属粉末层以形成打印层;通过所述激光能量密度调节单元调节激光能量对所述打印层进行照射以激发出超声波;通过所述多个超声波接收单元接收所述超声波,并通过所述检测单元对所述超声波的信息进行分析处理,实现缺陷的在线检测。

    一种金属增材制造的在线检测系统和金属增材制造装置

    公开(公告)号:CN111266583B

    公开(公告)日:2024-10-18

    申请号:CN202010257059.4

    申请日:2020-04-03

    Applicant: 厦门大学

    Inventor: 曾志伟 丁鹏程

    Abstract: 本发明公开了一种金属增材制造的在线检测系统和金属增材制造装置,涉及金属增材制造领域,所述在线检测系统包括非扫查式阵列涡流探头、移动机构和检测控制系统,其中:非扫查式阵列涡流探头包括多个涡流线圈,涡流线圈为单层或多层,其中每层成一定排列规则面状分布于非扫查式阵列涡流探头的检测侧,形成检测面;移动机构用于在增材制造的检测周期内将非扫查式阵列涡流探头移动至增材制造的打印区域上方,使其检测面覆盖整个打印区域,并在检测结束后,将非扫查式阵列涡流探头从打印区域上方移开;检测控制系统用于控制移动机构及控制非扫查式阵列涡流探头的移动和检测。本系统具有效率高、操作简单、提离小、灵敏度高、信噪比高等特点。

Patent Agency Ranking