-
公开(公告)号:CN109308517B
公开(公告)日:2021-08-24
申请号:CN201811041101.8
申请日:2018-09-07
Applicant: 中国科学院计算技术研究所
Abstract: 本发明涉及一种面向二值神经网络的二值化装置,包括:数据接收单元,用于接收神经网络待二值化的非二值输入数据和预设的二值化参数,其中,所述非二值输入数据是神经元数据和/或权值数据;二值化计算单元,用于针对所述输入数据执行二值化计算;数据输出单元,用于输出所述二值化计算单元获得的二值化结果。
-
公开(公告)号:CN108510058B
公开(公告)日:2021-07-20
申请号:CN201810166950.X
申请日:2018-02-28
Applicant: 中国科学院计算技术研究所
Abstract: 本发明提供一种神经网络中的权重存储方法以及基于该方法的神经网络存储器。该权重存储方法包括:将原二维权重卷积核构建为三维空间矩阵;查找所述三维空间矩阵中的有效权重并建立有效权重索引,其中,所述有效权重是非零权重,所述有效权重索引用于标记所述有效权重在所述三维空间矩阵的位置;存储所述有效权重以及所述有效权重索引。根据本发明的权重数据存储方法和卷积计算方法能够节省存储空间并提高计算效率。
-
公开(公告)号:CN108985449B
公开(公告)日:2021-03-09
申请号:CN201810685546.3
申请日:2018-06-28
Applicant: 中国科学院计算技术研究所
IPC: G06N3/063
Abstract: 本发明提供一种控制方法,包括:1)确定需要执行的卷积运算的尺寸n*n;2)根据需要执行的卷积运算的尺寸n*n,选择在m2个5*5的卷积计算单元中载入与所述尺寸对应的卷积核的数值,并将其余的各个数值填充为0,5m≥n;3)根据需要执行的卷积运算的尺寸、需要执行卷积的输入特征图的尺寸,确定卷积计算过程所需的周期数;4)在卷积计算过程中的各个周期,将相应的输入特征图的数值载入到所述m2个5*5的卷积计算单元中,所述输入特征图的数值在所述m2个5*5的卷积计算单元中的分布与所述卷积核的数值在所述m2个5*5的卷积计算单元中的分布保持一致;控制载入了卷积核以及输入特征图的数值的所述m2个5*5的卷积计算单元分别执行与所述周期数对应的卷积计算。
-
公开(公告)号:CN107818367B
公开(公告)日:2020-12-29
申请号:CN201711041164.9
申请日:2017-10-30
Applicant: 中国科学院计算技术研究所
IPC: G06N3/04
Abstract: 本发明提供了一种神经网络处理系统。该处理系统包括:计算阵列,用于执行神经元和权值的乘法和累加操作;控制单元,用于控制所述计算阵列的数据传递和加载,其中,所述计算阵列包括:至少一个列处理单元,由多个乘法单元构成,并用于执行神经元和权值的乘法运算,以输出乘积结果;至少一个列累加单元,与所述列处理单元相连,并用于对所述列处理单元的多个乘积结果进行累加;至少一个列暂存单元,与所述列累加单元相连,并用于存储所述列累加单元的计算结果。利用本发明的处理系统,在计算过程中能够实现神经元循环使用,从而提高了计算效率和资源利用率。
-
公开(公告)号:CN108734270B
公开(公告)日:2020-11-10
申请号:CN201810244109.8
申请日:2018-03-23
Applicant: 中国科学院计算技术研究所
Abstract: 本发明涉及一种兼容型神经网络加速器,包括存储单元,用于存储神经元数据、权值数据及控制指令并输出;矩阵运算单元,用于根据所述控制指令从所述存储单元接收数据并针对所述接收的数据执行矩阵运算并输出运算结果;模式运算单元,包括多个功能模块,所述功能模块可用于从所述矩阵运算单元和/所述激活单元和/或所述存储单元或接收数据,并根据所述控制指令针对所述接收的数据执行与网络对应的特定运算并输出运算结果;激活单元,用于从所述模式运算单元和/或所述存储单元接收数据,并针对所述接收的数据执行激活操作并输出激活结果。
-
公开(公告)号:CN107301455B
公开(公告)日:2020-11-03
申请号:CN201710311909.2
申请日:2017-05-05
Applicant: 中国科学院计算技术研究所
Abstract: 本发明提供一种混合内存立方体存储系统,包括混合立方体和设置在所述混合立方体的电路逻辑层上的计算控制器、乘加加速器及缓存。其中计算控制器响应于接收的要进行乘加计算的指令,通过所述混合立方体的内存控制器读取要进行计算的数据存入至缓存中,并指示乘加加速器进行计算;该乘加加速器用于响应于来自所述计算控制器的指令,读取缓存中的数据来并行地进行多路乘加计算并将计算结果写入至缓存。这样,在卷积神经网络计算时大量的并行计算及其涉及的频繁访存操作都可以该混合内存立方体内部完成,充分利用了混合内存立方体内部极高的内存带宽和低访问延迟,加快了计算速度,使得卷积神经网络整体的计算效率得到了提升。
-
-
公开(公告)号:CN107590533B
公开(公告)日:2020-07-31
申请号:CN201710753293.4
申请日:2017-08-29
Applicant: 中国科学院计算技术研究所
Abstract: 本发明提供一种用于深度神经网络的加速系统,包括:3D内存、与所述3D内存的拱顶的逻辑层上的内存控制器连接的深度神经网络计算单元、与所述内存控制器连接的路由器、以及压缩器和解压缩器;其中,各个拱顶的内存控制器经由与其连接的路由器通过片上网络进行数据传输;以及其中,所述压缩器用于对需要在片上网络中传输的用于深度神经网络的待压缩数据进行压缩,所述解压缩器用于对来自片上网络的用于深度神经网络的待解压缩数据进行解压缩。
-
公开(公告)号:CN110781262A
公开(公告)日:2020-02-11
申请号:CN201910998870.5
申请日:2019-10-21
Applicant: 中国科学院计算技术研究所
Abstract: 一种基于视觉SLAM语义地图的构建方法,该方法包括:通过RGB-D相机采集目标环境图像信息;根据所述目标环境图像信息选取关键帧并确定关键帧的相机位姿;对所述关键帧进行语义分割,预测图像像素的类别;利用所述关键帧的相机位姿以及所述预测的关键帧像素的类别,采用八叉树结构构建三维语义地图。
-
-
-
-
-
-
-
-
-