-
公开(公告)号:CN116843988B
公开(公告)日:2024-01-30
申请号:CN202310761008.9
申请日:2023-06-26
Applicant: 中国信息通信研究院
IPC: G06V10/77 , G06V40/12 , G06V10/764 , G06V10/82 , G06N3/0464 , G06N3/084
Abstract: 本发明提供一种基于深度学习的目标检测方法和系统,通过先提取生物和时间维度特征,再在重点关注区域内提取深度学习特征。针对生物特征采用生物指纹匹配和滑动框二次采样;针对时间特征根据差异化结果重新定义采样窗,再次对深度学习和生物两种特征进行采样重组。计算两两特征样本集之间的差异值,不仅可以调整重点关注区域的范围,还可以判断是否分类成功,克服了现有技术需要引入注意力机制、抑制不相关背景的不足,实现检测的高效性和自动性。
-
公开(公告)号:CN116633809B
公开(公告)日:2024-01-23
申请号:CN202310762753.5
申请日:2023-06-26
Applicant: 中国信息通信研究院
IPC: H04L43/04 , H04L41/16 , H04L9/40 , G06N3/0464 , G06F18/23 , G06F18/22 , G06V40/12 , G06F18/214 , G06F18/25
Abstract: 本发明提供一种基于人工智能的检测方法和系统,通过针对不同类型的数据包,分别提取深度学习、生物和时间三个不同维度的特征,从而可以覆盖网络全类型的数据包。针对深度学习特征采用降维采样和滑动窗二次采样;针对生物特征采用生物指纹匹配和滑动框二次采样;针对时间特征根据差异化结果重新定义采样窗,再次对深度学习和生物两种特征进行采样重组。通过以上步骤,使用两种不同途径的聚类处理,更好地利用模型进行分类。
-
公开(公告)号:CN117011766A
公开(公告)日:2023-11-07
申请号:CN202310926811.3
申请日:2023-07-26
Applicant: 中国信息通信研究院
IPC: G06V20/40 , G06V10/44 , G06V10/774 , G06V10/82
Abstract: 本发明提供一种基于帧内差异化的人工智能检测方法和系统,通过对视频帧内的差异化数据进行深度学习模型训练,实现对AI行为的精确检测,其中帧内的差异化数据是通过帧内网络获得,所述帧内网络采用多级卷积层迭代差值来提取帧内特征,计算帧内特征之间的欧氏距离和对比损失函数,得到图像差异值,克服了现有技术准确率有限,且对于动态和静态目标的效果不一致的问题,实现检测的快速、准确。
-
公开(公告)号:CN116843988A
公开(公告)日:2023-10-03
申请号:CN202310761008.9
申请日:2023-06-26
Applicant: 中国信息通信研究院
IPC: G06V10/77 , G06V40/12 , G06V10/764 , G06V10/82 , G06N3/0464 , G06N3/084
Abstract: 本发明提供一种基于深度学习的目标检测方法和系统,通过先提取生物和时间维度特征,再在重点关注区域内提取深度学习特征。针对生物特征采用生物指纹匹配和滑动框二次采样;针对时间特征根据差异化结果重新定义采样窗,再次对深度学习和生物两种特征进行采样重组。计算两两特征样本集之间的差异值,不仅可以调整重点关注区域的范围,还可以判断是否分类成功,克服了现有技术需要引入注意力机制、抑制不相关背景的不足,实现检测的高效性和自动性。
-
公开(公告)号:CN116633809A
公开(公告)日:2023-08-22
申请号:CN202310762753.5
申请日:2023-06-26
Applicant: 中国信息通信研究院
IPC: H04L43/04 , H04L41/16 , H04L9/40 , G06N3/0464 , G06F18/23 , G06F18/22 , G06V40/12 , G06F18/214 , G06F18/25
Abstract: 本发明提供一种基于人工智能的检测方法和系统,通过针对不同类型的数据包,分别提取深度学习、生物和时间三个不同维度的特征,从而可以覆盖网络全类型的数据包。针对深度学习特征采用降维采样和滑动窗二次采样;针对生物特征采用生物指纹匹配和滑动框二次采样;针对时间特征根据差异化结果重新定义采样窗,再次对深度学习和生物两种特征进行采样重组。通过以上步骤,使用两种不同途径的聚类处理,更好地利用模型进行分类。
-
-
-
-