-
公开(公告)号:CN112989706A
公开(公告)日:2021-06-18
申请号:CN202110354200.7
申请日:2021-04-01
Applicant: 东北大学
IPC: G06F30/27 , G06F119/04
Abstract: 本发明公开了一种隧道灯具照度衰减预测方法,选择使用递归特征消除(Recursive feature elimination)算法;基于全部特征进行训练;特征被消除的顺序即为特征的重要性排序,由于LSTM设计的循环结构的要求,需要输入特征向量组成的序列数据,构造样本数据集,利用LSTM模型来根据过去的一段时间数据来预测未来一段时间的数据,选定时间滞后组成的样本数据集后,使用一定时间范围的数据作为训练集,所有参数训练完成后,选用相关系数最高且绝对误差最小的模型作为最优预测模型。本发明以达到预测隧道灯具亮度衰减到照明细则规定的阈值的时间,从而提醒维修人员及时更换灯具,防止车辆进入隧道时安全事故发生。