-
公开(公告)号:CN111784078B
公开(公告)日:2022-04-26
申请号:CN202010723469.3
申请日:2020-07-24
Applicant: 支付宝(杭州)信息技术有限公司
Abstract: 本说明书实施例公开了一种针对决策树的分布式预测方法和系统,可保护各方数据隐私。各方预测模型具有相同结构。任一参与方根据预测对象在己方预测模型上的预测路径,获得己方的标志向量,该标志向量指示预测对象沿该预测路径抵达的叶节点。当预测至本地分裂节点时,基于与该本地分裂节点关联的特征值继续预测;当预测至非本地分裂节点时,继续预测至该非本地分裂节点下的所有子节点。该参与方将己方的标志向量拆分成N个分片,将该N个分片分配给N个参与方,并根据多方安全计算协议与其他N‑1个参与方交互,以基于分配到的N个参与方的标志向量的分片计算等效标志向量的分片,等效标志向量为N个参与方的标志向量按位相乘的结果。
-
公开(公告)号:CN111460510B
公开(公告)日:2022-04-12
申请号:CN202010302518.6
申请日:2020-04-17
Applicant: 支付宝(杭州)信息技术有限公司
Abstract: 本说明书实施例提供一种基于隐私保护确定多个业务方的相同业务数据的方法,通过在各个业务方按照相同规则分别设置的4个哈希表,结合布谷鸟哈希,以及相同业务数据的散列值存储位置重合原理,使得两两业务方之间的数据比较次数大大减少,例如减少至8(子表数量)与业务数据较多的业务方所拥有的业务数据条数的乘积,提高比较效率,另一方面,采用基于秘密共享的等式比较方式进行相应位置的两方数据比较,并在数据比较过程中采用随机抽取部分位比较的方法,减少安全比较过程中的计算量,提高比较效率。总之,本说明书的技术构思可以在隐私保护的基础上,提高确定多个业务方的相同业务数据的效率。
-
公开(公告)号:CN113689006A
公开(公告)日:2021-11-23
申请号:CN202111074304.9
申请日:2020-04-23
Applicant: 支付宝(杭州)信息技术有限公司
IPC: G06N20/20
Abstract: 本说明书实施例公开了一种模型联合训练的方法及系统。所述方法包括:多个联合训练的参与终端分别基于所述终端自身持有的私有数据联合进行模型训练,多个联合训练的参与终端分别使用基于梯度的优化算法生成各自的梯度;所述多个参与终端分别将所述各自的梯度发送给服务器;所述服务器从多个所述梯度中选取可信任梯度,并且根据选取的所述可信任梯度更新所述联合训练模型的参数;所述样本数据为文本数据、语音数据或者图形数据。
-
公开(公告)号:CN113657617A
公开(公告)日:2021-11-16
申请号:CN202111077337.9
申请日:2020-04-23
Applicant: 支付宝(杭州)信息技术有限公司
IPC: G06N20/20
Abstract: 本说明书实施例公开了一种模型联合训练的方法及系统。所述方法包括:多个联合训练的参与终端分别基于所述终端自身持有的私有数据联合进行模型训练,多个联合训练的参与终端分别使用基于梯度的优化算法生成各自的梯度;所述多个参与终端分别将所述各自的梯度发送给服务器;所述服务器从多个所述梯度中选取可信任梯度,并且根据选取的所述可信任梯度更新所述联合训练模型的参数;所述样本数据为文本数据、语音数据或者图形数据。
-
公开(公告)号:CN111125735B
公开(公告)日:2021-11-02
申请号:CN201911329590.1
申请日:2019-12-20
Applicant: 支付宝(杭州)信息技术有限公司
Abstract: 本说明书一个或多个实施例涉及一种基于隐私数据进行模型训练的方法及系统。该方法包括:第二终端接收来自第一终端的加密后的第一隐私数据;第一隐私数据由与其对应的特征和模型参数确定;第二终端至少将加密后的第一隐私数据与第二隐私数据的加密数据进行计算,得到加密后的结果;第二隐私数据由与其对应的特征和模型参数确定;第二终端基于所述加密后的结果以及样本标签,得到至少基于所述第一隐私数据和第二隐私数据联合训练的模型的加密损失值;通过第三方将所述加密损失值参与第一解密梯度和第二解密梯度的计算;第一解密梯度和第二解密梯度分别与第一隐私数据和第二隐私数据对应,第一解密梯度和第二解密梯度用于更新联合训练的模型。
-
公开(公告)号:CN111309983B
公开(公告)日:2021-09-21
申请号:CN202010162991.9
申请日:2020-03-10
Applicant: 支付宝(杭州)信息技术有限公司
IPC: G06F16/901 , G06N3/08
Abstract: 本说明书实施例提供一种基于异构图进行业务处理的方法和装置,可以利用不同结构的关系网络构成的异构图直接进行业务处理。在本说明书的实施架构下,利用多个不同连接关系类型的关系网络,可以更加全面的刻画实体的特征,另一方面,针对各个关系网络分别处理得到节点的各个业务表征向量,无需对各个关系网络进行综合,可以避免繁琐的手工特征抽取,进一步地,可以自动确定在当前业务下,当前实体在每个关系网络中的重要度系数(权重),实现在各个关系网络下的信息融合,从而使得对当前实体的评估结果更加准确。
-
公开(公告)号:CN113313208A
公开(公告)日:2021-08-27
申请号:CN202110714723.8
申请日:2021-02-05
Applicant: 支付宝(杭州)信息技术有限公司
Abstract: 本说明书涉及一种对象聚类方法和系统,在该方法包括基于多个对象及对象间的关联关系构造图数据;其中,所述图数据包括多个节点以及节点间的边权信息;对图神经网络模型进行一轮或多轮迭代更新,并将最后一轮迭代更新获得的图数据的节点类簇作为节点聚类结果,进而基于节点聚类结果确定对象聚类结果,其中一轮迭代更新包括:利用图神经网络模型处理图数据,得到各节点的嵌入向量,以及基于各节点的嵌入向量确定的节点间的边权预测信息;利用聚类算法处理各节点的嵌入向量,得到一个或多个类簇;确定每个类簇的中心点的嵌入向量,并计算各节点与其所在类簇的中心点的距离;调整所述图神经网络模型的模型参数。
-
公开(公告)号:CN112288088B
公开(公告)日:2021-08-20
申请号:CN202011585759.2
申请日:2020-12-29
Applicant: 支付宝(杭州)信息技术有限公司
Abstract: 本说明书实施例提供用于经由多个成员设备训练业务模型的方法、装置及系统。第一和第二成员设备分别具有第一和第二数据,第一和第二数据按照垂直切分方式组成用于模型训练的训练样本集,并且第一成员设备具有训练样本的标签数据。在每次循环时,各个成员设备协同,使用当前训练样本训练出当前业务模型并得到当前训练样本的模型预测结果。在第一成员设备处根据模型预测结果确定出当前训练样本中的预测误差最大的第一训练样本,并将第一训练样本的样本标识发送给各个第二成员设备。各个成员设备协同来从未使用训练样本中选择出与第一训练样本相似的第二训练样本,作为下一循环过程的当前训练样本。
-
公开(公告)号:CN112507388B
公开(公告)日:2021-05-25
申请号:CN202110158847.2
申请日:2021-02-05
Applicant: 支付宝(杭州)信息技术有限公司
IPC: G06F21/62 , G06N3/08 , G06N20/00 , G06F40/284 , G06F40/242
Abstract: 本说明书实施例提供用于经由至少两个第一成员设备训练word2vec模型的方法、装置及系统。各个第一成员设备基于所具有的本地语料的语料分词结果生成本地分词词库,使用各自的本地分词词库进行隐私求交确定公共分词,并向其余第一成员设备共享非公共分词数目。随后,各个第一成员设备根据公共分词以及各个第一成员设备的非公共分词数目进行统一分词编号,生成统一字典。然后,各个第一成员设备基于统一字典和本地语料的语料分词结果生成各自的训练样本,并使用各自的训练样本执行基于隐私保护的模型训练来训练出word2vec模型。
-
公开(公告)号:CN112597540A
公开(公告)日:2021-04-02
申请号:CN202110115832.8
申请日:2021-01-28
Applicant: 支付宝(杭州)信息技术有限公司
Abstract: 本说明书实施例提供基于隐私保护的多重共线性检测方案。该多重共线性检测方案由多个成员设备执行,每个成员设备具有本地特征数据。各个成员设备对各自的本地特征数据执行数据对齐来构建出联合特征矩阵,并且协同来执行基于隐私保护的多方矩阵乘法计算,求出联合特征矩阵与其转置矩阵的乘积矩阵,每个成员设备具有乘积矩阵的乘积矩阵分片。然后,各个成员设备使用各自的乘积矩阵分片联合确定乘积矩阵的逆矩阵,每个成员设备具有逆矩阵的逆矩阵分片。随后,各个成员设备使用各自的逆矩阵分片以及本地特征数据确定样本数据的各个属性特征的方差膨胀因子,每个成员设备具有各个属性特征的方差膨胀因子的分片数据,并根据各自具有的各个属性特征的方差膨胀因子的分片数据来确定多重共线性。
-
-
-
-
-
-
-
-
-