一种基于深度集成学习的高分辨率遥感图像分类方法

    公开(公告)号:CN111368776A

    公开(公告)日:2020-07-03

    申请号:CN202010173481.1

    申请日:2020-03-13

    Applicant: 长安大学

    Abstract: 本发明公开了一种基于深度集成学习的高分辨率遥感图像分类方法,其思路为:首先使用像元亮度值作为分类特征进行全连接网络分类实验;其次使用面向对象分割,再以重心为中心提取卷积块进行卷积神经网络分类;再将原始图像全部裁剪为图像块,使用U-Net完全卷积网络进行one vs all多元分类;最后,在前三个深度网络基分类器的分类结果上训练一个全连接网络进行概率组合,实现了较好的分类性能。本发明通过使用深度集成学习方法,能够有效结合光谱和空间等信息改善分类准确率,且综合基分类器的优势,在高分辨率遥感图像分类的单个类别和总体分类精度上都能得到比单一分类器更好的分类精度。

Patent Agency Ranking