-
公开(公告)号:CN115175268A
公开(公告)日:2022-10-11
申请号:CN202210767617.0
申请日:2022-07-01
Applicant: 重庆邮电大学
Abstract: 本发明属于无线传感器网络技术领域,具体涉及一种基于深度强化学习的异构网络节能路由方法,传感器节点根据自身传感器的预定义计划感知环境,收集观测数据并存入对应的缓存队列;并在等待时间内,接收邻居节点传送的聚合数据并存入对应的缓存队列;传感器节点将同一缓存队列中的数据聚合,得到多种类型的聚合数据;根据Q学习自适应算法选择每种类型的聚合数据的下一跳传感器节点并转发;传感器节点根据下一跳传感器节点的响应更新对应传感器的Q表,本发明基于机器学习的自适应路由实现对网络动态变化的实时捕获,用较小的开销实现对整个网络的动态掌控,具有较好的节能性能,有效的延长了网络生命周期。
-
公开(公告)号:CN114677559A
公开(公告)日:2022-06-28
申请号:CN202210253649.9
申请日:2022-03-15
Applicant: 重庆邮电大学
IPC: G06V10/774 , G06V10/764 , G06K9/62 , G06T7/00 , G06N3/04
Abstract: 本发明涉及深度学习技术领域,尤其涉及一种改进ResNet‑50网络结构的路面裂缝检测方法,通过移除ResNet‑50网络的全连接层和平均池化层,将混合扩张卷积融入网络后三层中,在第二层与第三层、第三层与第四层、第四层与第五层之间加入空间‑通道注意力机制,并使用多尺度特征融合的方式对提取的特征进行融合形成改进ResNet‑50网络,并使用路面裂缝数据集对改进后的网络模型进行训练获得裂缝检测网络模型,最后使用裂缝检测网络模型进行裂缝分类和严重程度评估,改进的扩张卷积模块可以从更大范围的像素中提取特征,确保网络能获取全局特征信息,多尺度特征融合的方式对提取的特征融合提高了准确率。
-