-
公开(公告)号:CN113239866B
公开(公告)日:2022-12-13
申请号:CN202110603019.5
申请日:2021-05-31
Applicant: 西安电子科技大学
Abstract: 本发明公开了一种基于时空特征融合与样本注意增强的人脸识别方法及系统,通过人脸检测得到视频中特定目标人脸序列并对其进行评分;使用时间序列处理算法ConvGRU对人脸序列进行时间特征提取;从人脸序列中选出分数最高的图像作为关键帧;送入到Resnet50网络中提取出三种不同深度的特征图,使用空间特征融合算法ASFF计算得到空间特征;最后,将上述得到的时间特征和空间特征在通道维度上拼接后送入全局平均池化层和全连接层,使用提出的ADAM‑Softmax损失函数对模型进行训练;由于ADAM‑Softmax损失函数能够自适应增强对类内差异性较大样本的注意,从而使得模型在快速收敛同时也能达到较高识别准确率。
-
公开(公告)号:CN113378721A
公开(公告)日:2021-09-10
申请号:CN202110657280.3
申请日:2021-06-11
Applicant: 西安电子科技大学
Abstract: 本发明公开了一种基于对称和局部判别的生成对抗人脸校正方法及系统,构造并训练基于对称性先验和局部判别的多路生成对抗网络,该网络包括多路生成器、全局图像判别器、局部区域判别器、全局图像特征提取网络和局部区域特征提取网络。依据人脸对称性这一先验知识,统一人脸偏转方向为正偏转方向,采用局部生成器对发生纹理和结构形变较小的左眼区域进行校正,水平翻转校正后的左眼区域作为校正后的右眼区域;同时对生成的正脸图像提取对应的局部区域进行图像判别和身份判别,使得最终生成的正脸图像在双眼区域与真实的正脸图像能够保持较好的一致性,同时能够更好的恢复局部纹理细节。
-